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OPTIMIZATION OF STABILITY OF A FLEXIBLE MISSILE
UNDER FOLLOWER THRUST

Oleg N. Kirillov* and Alexander P. Seyranian"
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ABSTRACT

This paper addresses two formulations of a dy-
namic problem of structural optimization. We con-
sider a beam moving in space under a tangential end
force as an idealization of a flexible missile. This
nonconservative system can lose stability under a
certain critical end force either by flutter or by diver-
gence. That depends on the mass and/or stiffness dis-
tributions of the beam.

We first consider a non-uniform beam supposing
its cross-sections are similar geometric figures. We
are searching for an optimal mass distribution of the
beam with the constant volume constraint in the sense
of maximization of the critical end force. In the sec-
ond formulation of the problem we study a uniform
beam carrying a nonstructural mass. In this case our
goal is to find an optimal distribution of the non-
structural mass with constant volume constraint.

For the first problem the mass distribution of the
beam with the critical flutter load p* « 290 is ob-
tained. In the second case it is shown with the use of
Pontryagin's maximum principle that optimal solu-
tions belong to the «bang-bang» type. Optimal distri-
butions of nonstructural mass with two and four
switching points are presented.

I. INTRODUCTION

The stability of a uniform beam moving in space
under a tangential end force, as an idealization of a
flexible missile, has been investigated first by Gopak
[1], Feodosiev [2], Beal [3], and Goroshko [4]. The
separated dimensionless differential equation of this
problem describing transverse vibrations of the beam
s

.IV (1.1)

with the boundary conditions
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= 1=0,M '" | ; t = 1=0, (1.2)
as shown in detail in [1-4]. Primes denote differentia-
tion with respect to x. It has been found that this
system loses stability by flutter under a critical end
force p* = 109.69 [2].

Sundararajan [5] considered the problem of op-
timal arrangement of nonstructural mass along such a
beam. He plotted graphs showing dependence of the
critical load on the displacement of the concentrated
mass along the beam and found the optimal point. But
this result seems to be not accurate since he used only
two modes in Bubnov-Galerkin approximation.
Sundararajan [5] also attempted to find an optimal
continuous nonstructural mass distribution.

In this paper we use and develop further the
ideas and methods presented in Seyranian and Sha-
ranyuk [8], Pedersen and Seyranian [9], and Seyra-
nian [10].

II. BASIC RELATIONS

Consider a flexible beam moving in space under
a tangential end force with non-uniform cross-
sections. It is assumed that the beam carries a non-
structural mass. This system is described by the fol-
lowing equations and boundary conditions [4]:

mU-(Q(s)U') +(£/£/")" =0

where:

M= \m\
o

*w jl/j-w»*» (21)

E/C/"U=0,(£/t/")'s=0=0,

EJU"\s=l=0,(EJU")'\s=l=0,

I is the length of the beam,

", - the total mass of the beam,

P - the follower force,
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m(s) = /HI (s) + m2 (s),
m} (s) - the mass of the beam per unit length,
m2 (s) is nonstructural mass per unit length,

and U(s, /) is a deflection of the beam.
Suppose that cross-sections of the beam are

similar geometric figures. Then we have:
~ 2 / N r

- = jm2(s}, (2.2)V ' P
2S2

where p is the constant density of the beam, J* is
moment of inertia of a cross-section with the area
S» of the beam.

Let us take U(s, t) = U(s)eiai and introduce di-
mensionless variables:

_ ^
m~~M'

s Ux = — , u = — .
I I M

P =
PI4

EM2y EMy
(2.3)

Now we get the separated dimensionless differ-
ential equation with the appropriate boundary condi-
tions, which describe the eigenvalue problem for
(2.1):

+ pu

mu
x=Q

x=\

(2.4)

= 0.

Further we shall consider two formulations of the
problem (2.4), which differ by the function
m(x) = ml (x) + m2 (x):

1) m = ml(x), m2 =0; (2.5)
2) //I, = 1 -K , m2 = K/U(X) , (2.6)

i
where n(£)d% = 1. In particular, ju(x) can be a Dirac

o
delta-function: ju(x) = S(x - a).

III. OPTIMIZATION PROBLEM
FOR THE BEAM

WITHOUT NONSTRUCTURAL MASS

Problem formulation

We first consider the beam without nonstructural
mass. Combining (2.4) and (2.5), we obtain appropri-
ate eigenvalue problem

x=Q

(m2u"\ =Q,(m2u"}
V l\x=\ V /

= 0,
x=Q

= 0. (3.1)
x=\

This nonconservative system can lose stability by
flutter or by divergence depending on mass distribu-
tion m(x) and load parameter/?.

Now we formulate an optimization problem. For
the system described by equations (3.1) we must find
a mass distribution, satisfying the constant volume
constraint, so as to obtain a maximum critical load p*

maxp*(w), (3.2)

Q = m(x): = 1; m(x) >0,xe [0,1]

For this purpose we use sensitivity analysis by
introduction of the problem, adjoint to (3.1), and find
a gradient function of the critical load parameter
p* with respect to the mass distribution m^x) . Then
we formulate a variational principle which will be
used for obtaining discretized problem for numerical
solution.

Adjoint problem

If we multiply the first equation of (3.1) by the
function v(x) , then integrate by parts the equality
i

v(x)Lu(x)dx = 0 , and take into account the bound-
o

ary conditions (3.1), we get the adjoint eigenvalue
problem

i
L*v = (m2v")" + P(v' \m(%)d£)'-m(D2v = 0

X

(m2v") =0, (m2v"Y =0. (3.3)*=i *=i
With the use of the main (3.1) and adjoint (3.3)

problems a «flutter condition)) can be derived. Let
(0j , Uj be an eigenvalue and an eigenvector of the
problem (3.1), and a>j , Vj be an eigenvalue and an
eigenvector of the problem (3.3). First we integrate
twice by part the equalities

i i
Jv, (x)Lu, (x)dx = 0 , J«, (x)L\j (x)dx = 0 ,
0 0

and subtract the second equality from the first.
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Using the boundary conditions (3.1) and (3.3) we
get the relation

i

which for a>i * 0; expresses the biorthogonality con-
i

dition mUjVjdx = 0 . At a flutter point the condition
o

of a double eigenvalue, by arguments of continuity,
gives the flutter condition

i
fmu^dx = 0 . (3.4)

o

Gradient function

Now we can find the gradient function and study
the sensitivity of the critical load parameter with re-
spect to the mass distribution.

Let us take a variation Sm(x) of the mass distri-
bution m(x) . Then the critical load parameter p* , the
critical frequency fi>* , and the eigenfunction w* take
increments dp* ,<5ca* ,Su* . From equations (3.1) we
get the equation and the boundary conditions in
variations

* + \2mSmu"j -<a* Smu*

x=0

x=l
= 0,

= 0,
x=o

= 0. (3.6)
x=l

Multiplying (3.5) from the left by v*, then integrating
with respect to x from 0 to 1, and using flutter condi-
tion (3.4), we obtain

- vi/» }dx =v. (m2Su?

+ v* (imSrnu'^] - vi 2mSmui\Q +

dx = 0,

where first four non-integral terms are zero by means
of the boundary conditions in variations (3.6).
Besides, the term

can be transformed into

Finally, we obtain the expression
i i

o ;
which can be rewritten in the following form

i
5p* = )gfdmdx, (3.7)

o
i

co, it*v. - 2muiV,' + p,v» (O)M! (o) + /?. J uivid%

The function gf (x) is the gradient function of the
critical flutter load p* with respect to the mass distri-
bution m(x). This function shows the sensitivity of
flutter load />*with respect to mass distribution. To
compute gf (x) we have to know only solutions of the
main (3.1) and adjoint (3.3) eigenvalue problems.

Under certain m(x) and p* system (3.1) can lose
stability by divergence, i.e., when one of the eigen-
values ca becomes zero. The equations describing this
situation can be derived from (3.1) when the equality
a> = 0 is taken into consideration. Using the same
technique, we obtain the gradient function gd (x) of
the critical divergence load parameter /?* with re-
spect to the mass distribution m(x)
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,(*)=•

i

*(O)M;(O) + /*, JuIv

i ( i

(3.8)

Variational principle

Let us consider a functional /(«,v), which is
obtained from the scalar product (iw, v) with the use
of integration by parts

i

/(a,v)= J{i»2«"v"-pv(oV(o)-

(3.9)

pu ' v ' - m ca uv

Variation of this functional with respect to u and vis

= H (m2u"} + J u' \rr(£)d% - mco2u \Svdx +

(m2u"}Sv'\ = -(m2v"} Sv

(m2u"}Sv' _ +(m2u") Sv

x=\

(/M2v")<5w'| = -

=0.

(3.10)
It is easy to see from (3.10) that stationarity of

the functional l(u, v) with respect to arbitrary smooth
variations Su , dv is equivalent to the boundary value
problems (3.1) and (3.3). The property of stationarity
of the functional /(M, v) in combination with Bubnov-
Galerkin procedure or with a finite element method
gives a simple way for discretization of our eigen-
value problems.

Discretization
and method of solution

To obtain discrete approximation of the eigen-
value problems we use the property of stationarity of
the functional l(u, v) . Let us take approximations

N N

«Cc) = £«,-«,- (x),v(x) = ]T PjVj Of) • (3-11)
/=! j=\

Substituting expansions (3.1 1) in (3.9) we get
N N

(=1 7=1

9Jt = J{w2«;vy-/7vy(o)ii/(o)-

1
mco2uiVj \dx.

•3T -TT

Stationarity conditions — — = 0 , — — = 0 written
dat tfj

for the functional IN lead to two systems of linear
equations for determination of the coefficients a, , /?,-

/« ,= 0,7 = 1..
1=1

N

(3.13)

(3.14)

Note that the vectors a = «!,.., aw and
y5 = (^ , . . , fiN ) are right and left eigenvectors of the

matrix O J L respectively. Equality detO,-,- =0

serves for finding the eigenvalues ca2 .
We use the following basis functions

M! (x) = V! (x) = 1,
u2 (x) = v2 (x) = x,

i+l

= v, Of) = = 3- •
k=2

(3.15)
We choose basis functions M, (x) , v,- (x) satis-

fying the boundary conditions of the selfadjoint
problem, which can be obtained from (3.1) or (3.3)
when the condition p = 0 is taken into account. In
addition, we demand the orthogonality of the basis
functions with the different indexes

i
J miij Uj dx = 0 , / * j .
o

With these two demands we can find coefficients
cki in (3.15). Note that basis functions differ for dif-
ferent mass distributions. Thus we have to calculate
M, , v, on each step of the optimization procedure.

Optimization procedure

To construct approximations to optimal mass
distribution we use a gradient method.
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Let us consider a variation of the critical load pa-
rameter/?* taking into account constant volume con-

straint = 0 :

<>P* ~ , £ = const , (3.16)

g(x) can be either gf (x) or gd (x). If we choose
variation of mass distribution as

S? f \( i \ \ (1 1 T\

where the gradient step a(x) is arbitrary nonnegative
function, then in the first approximation we obtain

Sp, = Ja(xXg(x) -s)2dc>0, (3.18)
o

i
\a(x)g(x)dx

£ = - (3.19)

The inequality (3.18) shows that variation (3.17)
causes monotonous growth of the functional of criti-
cal load for rather small step \a «1, x e [0,l].

Each iteration of the optimization procedure
consists of three steps.

First for current mass distribution we find critical
load /?*and establish the mechanism of instability:
flutter or divergence. For that we solve the main and
the adjoint eigenvalue problems for different values
of the load parameter p.

Then we calculate the appropriate gradient func-
tion gj- (*) or gd (x) at the critical load /?* accord-
ing to the expressions (3.7) or (3.8), respectively.

On the last step we obtain the variation of the
mass distribution by (3.16) and calculate new mass
distribution

mk+l=mk+Sm,k = 0,1,2,.. (3.20)
In our calculations we choose m0 (x) = 1 as an initial
approximation to the optimal mass distribution.

Numerical results

We start with the initial mass distribution
m(x) = 1. In this case the system loses stability by
flutter under a critical load parameter /?* = 109.69
(Fig 1).

After several first iterations accompanied by the
growth of jo* we get the mass distribution (Fig 2a)
when the system loses stability by divergence
(FigSa).
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Figure 1. Initial mass distribution, characteristic curves, and
gradient function
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Figure 2. Evolution of mass distributions Figure 3 . Evolution of characteristic curves
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0.2 0.6

In such situation we calculate gradient function
of divergence critical load (Fig 4a) and use it for the
mass distribution computation according to (3.17),
(3.20).

So we are searching for the mass distribution
which maximizes the minimal of the critical flutter or
divergence loads. Some further iterations are shown
in Figures 2 - 4 . Finally we obtain the mass distribu-
tion with the critical flutter load p* « 290 as shown in
Figures 2c-3c.

In Fig 3c we also can see intersection of two
curves describing dependence of frequencies of the
system on the load parameter p. The appropriate
mass distribution (Fig 2c) seems to be close to the
optimal.
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Figure 4. Evolution of gradient functions

IV. OPTIMIZATION PROBLEM
FOR THE BEAM

CARRYING NONSTRUCTURAL MASS

Problem formulation

Now we consider the beam carrying nonstruc-
tural mass. According to (2.4) and (2.6) we have

(4.1)

where
1

\ = \-K + K[l(x}, ^(x)tffr = l.

We denote K , 0 < K < 1 , the part of nonstructural
mass in the total mass of the system. The total mass of
the system is equal to 1 .

i
Let us denote u\=u , u5 = m(£)cU; and re-

X

write the system (4.1) in the normal form of differen-
tial equations of first order with the boundary condi-
tions

u{ =u2,u'2 =u3,u^ = M 4 ,

(\-K)2u'4 = -pu3us+(pu2 + a)2ul)m,
u'5=-m,

«s(l) = 0. (4.2)
This form is convenient to use the Pontryagin maxi-
mum principle [6].

Note that «control function» m (and also // ) ap-
pears in the right hand side of new system linearly. If
additionally we introduce upper and lower constraints
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on //(jc) then we get from Pontryagin's maximum
principle [6] that the optimal nonstructural mass dis-
tribution K^(X) will be of a «bang-bang» type.

Let — be the upper bound for //*) and 0 be the
K

lower bound, respectively. Then we can formulate
optimization problem.

For the system described by equations (4.1) we
are searching for a nonstructural mass distribution
KfJ(x), satisfying the constant volume constraint so as
to obtain a maximum critical load p*

max/?.(//), (4.3)

fl = //(*): = 1;0 < KJU(X) <L,xe [0,1] .

Adjoint problem

With the use of the technique described in sec-
tion III we obtain the problem adjoint to (4.1)

(\-K} 2vIV

= 0 , V ' = 0 , (4.4)

Gradient function

Gradient function of the critical flutter load is
X

a>2u*v* + p*v*(o)w* (o) + /?* I uivid%

gf (*) = —————;—————rr-2——— • (4-5)
J,
o x

For the critical divergence load we have

-. (4.6)

Both formulae (4.4), (4.5) are obtained using the
method described in section III.

Variational principle.
Discretization and method of solution

Discrete approximation of main and adjoint ei-
genvalue problems is obtained using the property of

stationarity of some functional as described earlier.
The appropriate functional is

i
/(«, v) = fj(l -K)2 u"v"-pv(o)u'(0)-

(4.7)

- pu ' v ' - m co 2 uv \ dx.

We use the same basis functions in Bubnov-
Galerkin expansions as in (3.14).

Optimization procedure

To construct variation of nonstructural mass dis-
tribution we use method, which is described by Fe-
dorenko in [7]. This method is convenient when
solving the problems of optimal control with such
constraints on control function as we have.

Let // = (//j,.., HN ) be a discrete approximation

of the ju(x), s = (.?!,.., SN ) be discrete approxima-
N-\f (k+\)h

tion of the n(x variation, F = \ sk+^ \ g(x)
k=0 kh

1and h = — be the step of the discrete net.
N F

Then for obtaining variation of mass distribution
we must solve the linear programming problem

»=i
Therefore for new nonstructural mass distribu-

tion we have
K^k+l) = Wtk) + aKs\k) ,i = l,..N, (4.9)

where a e[0,l] is chosen by researcher. Recall that
distribution of the total mass of the system is
m(x) = 1 -K +K/J(X) .

As in the previous section each iteration of the
optimization procedure consists of three steps.

First for current nonstructural mass distribution
we find critical load p* and establish the mechanism
of instability: flutter or divergence. For that we solve
the main (4.1) and the adjoint (4.4) eigenvalue prob-
lems for different values of the load parameter p .

Then we calculate the appropriate gradient func-
tion gf(x)or gd(x) at the critical load p* according
to the expressions (4.5) or (4.6), respectively.

On the last step we obtain the variation of the
mass distribution solving the linear programming
problem (4.8) and calculate new nonstructural mass
distribution according to (4.9). As earlier we choose
//o (x) = 1 as an initial approximation to the optimal
nonstructural mass distribution.
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Figure 5. Mass distributions n{x) for different values Figure 6. Characteristic curves for the mass distribu-
, T tions shown in Figure 5of parameters K and L
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-100-

g -200

Numerical results

In Figures 5-8 numerical results are presented. In
Figures 5a-5b two optimal mass distributions are

shown for K = — and different values of I .It can be
11

seen that if the constraint Lis not very large then op-
timal mass distribution has four switching points. Op-
timal mass distribution with two switching points ap-
pears when we take larger L. In Figure 5c the mass
distribution with four switching points is shown for

K = — and 1 = 1. In this case characteristic curves
4

intersect similar to those shown in Figure 3c. Thus we
can suppose that the mass distribution shown in figure
5c is close to optimal.

200 b)

0.2 0.6 0.8

-300

Figure 7. Gradient functions for the situations shown
in Figure 6

V. CONCLUSION

The paper is devoted to stability analysis and
optimal distribution of stiffness and mass for a beam
moving in space under a tangential end force. This
problem is an idealization of dynamic stability of a
flexible missile.

First we derived explicit expressions for gradient
functions showing sensitivity of the critical flutter and
divergence loads with respect to stiffness and mass
rearrangements. For this purpose we introduced the
adjoint eigenvalue problem. Then for stability analy-
sis of the nonconservative problem we presented a
variational principle which is very convenient for
discretization of the continuous eigenvalue problem
using Bubnov-Galerkin or other approximation tech-
niques.

The numerical method based on the variational
principle seems to be very effective for solving non-
conservative stability problems many times which is
necessary for finding optimal stiffness and mass dis-
tributions. Optimal solutions were obtained using
gradient projection method and linear programming
in the design space. The obtained results show that
rational mass and stiffness distribution can radically
improve stability characteristics of the moving beam.
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