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ABSTRACT

In the present paper eigenvalue problems for non-selfadjoint

linear di�erential operators smoothly dependent on a vector of

real parameters are considered. Bifurcation of eigenvalues along

smooth curves in the parameter space is studied. The case of

m ultipleeigen valuewith Keldysh chain of arbitrary length is

considered. Explicit expressions describing bifurcation of eigen-

values are found. The obtained formulae use eigenfunctions and

associated functions of the adjoint eigenvalue problems as well

as the derivatives of the di�erential operator taken at the initial

point of the parameter space. These results are important for

the stabilit y theory , sensitivit y analysis and structural optimiza

tion. As a mechanical application the extended Beck's problem

of stabilit y of an elastic column under action of potential force

and tangential follo w erforce is considered and discussed in de-

tail.

NOMENCLATURE

A The cross-sectional area of the column.

E The Young modulus of the column.

I The cross-sectional moment of inertia of the column.

EI The bending sti�ness of the column.

Lc The length of the column.

ha;bi The scalar product
Pn

i=1 aibi of v ectorsa;b 2 Rn

in the parameter space.

(';  ) The scalar product
R 1
0
'(x) (x)dx of functions ',

 2 C(m) [0; 1].
� The material density of the column.
ll correspondence to this author.
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�A The mass of the column per unit length.

INTRODUCTION

Non-selfadjoint operators appear in nonconservative

problems of mechanics and ph ysics. The theory of non-

selfadjoint operators ascending to works by G. Birkho� was

then dev elopingby many mathematicians. M.V. Keldysh

was the �rst who generalized the notion of the Jordan

chain of vectors for a wide class of non-selfadjoint opera-

tors (Keldysh, 1951). In the generic case the spectrum of a

multiparameter family of non-selfadjoint operators contains

multiple eigenvalues with Keldysh chains. It turns out that

such eigenvalues de�ne geometric properties of the stability

boundary of a corresponding non-conservativ e system. An

e�ective tool of analysis of this boundary is the study of

a bifurcation of eigen valuesdue to change of parameters.

Up to the recen ttime stabilit y boundaries only of �nite-

dimensional systems were investigated (Seyranian, 1991).

Consider an eigenvalue problem for the linear di�eren-

tial operator L

l(u) = �u; Us(u) = 0; s = 1; : : : ;m; (1)

where

l(u) �
mX
i=0

ai
dm�iu

dxm�i
;
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Us(u) �
m�1X
i=0

�
�si
diu

dxi

����
x=0

+ �si
diu

dxi

����
x=1

�
:

Operators Us(u) are linear forms with respect to the vari-

ables u(0), u0(0), : : :, u(m�1)(0); u(1), u0(1), : : :, u(m�1)(1).

These variables are values of the function u 2 C(m)[0; 1]
and the derivatives of this function up to (m�1) { th order

taken at the points x = 0 and x = 1. It is assumed that

forms Us, s = 1; 2; : : : ;m are linearly independent.

The di�erential expression

l�(v) �
mX
i=0

(�1)m�iaiv(m�i);

where the overbar denotes complex conjugation, is called

adjoint to the di�erential expression l(u) (Naimark, 1969).
With the use of integration by parts it can be shown that

Z 1

0

l(u)�vdx = P (�; �) +

Z 1

0

ul�(v)dx; (2)

where P (�; �) { is a bilinear form of variables

� = (u(0); u0(0); : : : ; u(m�1)(0); u(1); u0(1); : : : ; u(m�1)(1))

(3)

� = (v(0); v0(0); : : : ; v(m�1)(0); v(1); v0(1); : : : ; v(m�1)(1))

(4)

Let us choose the forms Um+1; Um+2; : : : ; U2m so that

U1; U2; : : : ; U2m be linearly independent. Then variables

(3), (4) can be expressed as linear combinations of the forms

U1; U2; : : : ; U2m. Substituting these linear combinations

into (2), we get Lagrange's formula (Naimark, 1969)

(l(u); v)� (u; l�(v)) = U1V 2m + � � �+ U2mV 1: (5)

The coeÆcients at U1; U2; : : : ; U2m are linear forms

with respect to variables (3), (4) and are denoted by

V 2m; : : : ; V 2; V 1, respectively. The forms V 1; V 2; : : : ; V 2m

are linearly independent. The boundary conditions V s(v) =
0, s = 1; 2; : : : ;m are called adjoint to boundary conditions

(1). The di�erential operator L�, corresponding to the dif-

ferential expression l�(v) and to the adjoint boundary con-

ditions, is called adjoint to the operator L, and we say that

the eigenvalue problem

l�(v) = �v; V s(v) = 0; s = 1; : : : ;m; (6)
2

is adjoint to eigenvalue problem (1).

Due to boundary conditions (1), (6) formula (5) for the

adjoint operators L and L� takes a simple form: (l(u); v) =
(u; l�(v)). If we consider di�erential expression l(u) and

assume that the function u satis�es the non-homogeneous

boundary conditions

Us(u) = Gs; s = 1; 2; : : : ;m; (7)

then Lagrange's formula (5) takes the form

(l(u); v)� (u; l�(v)) = G1V 2m + � � �+GmV m+1: (8)

This is valid since v satis�es boundary conditions (6).

COLLAPSE OF KELDYSH CHAINS

Suppose that in eigenvalue problem (1) the coeÆcients

of the di�erential expression l(u) and the coeÆcients of the

forms Us(u) are real functions, smoothly dependent on a

vector of real parameters p = (p1 ; p2 ; : : : ; pn ), i.e. are C
1

{ functions on an open set 
 � Rn. Let �0 be an eigenvalue
of the operator L at the point p = p0. We are interested

in bifurcation of eigenvalues along the curves p(�) = p0 +

�e+o(�), emitted from the initial point p0 in the parameter

space. The vector e = (e1 ; e2 ; : : : ; en ) de�nes the direction
of a curve and � � 0 is a small parameter. Due to variation

of parameters the di�erential expression l(u) and the forms

Us(u) take increments

l(u)=l0(u)+�l1(u)+ : : : ; Us(u)=Us

0 (u)+�U
s

1 (u)+ : : : ;
(9)

Di�erential expressions l0(u), l1(u) look like

l0 = l(u)j
p=p

0

; l1(u) =

nX
i=1

ei
@l

@pi
(u); (10)

and for the forms Us
0 (u), U

s
1 (u) we have

Us

0 = Us (u)j
p=p

0

; Us

1 (u) =

nX
i=1

ei
@Us

@pi
(u): (11)

All the derivatives in formulae (10), (11) are taken at the

point p = p0. Thus, we consider regular perturbations

which do not increase the order of the non-perturbed oper-

ator L0 = L(p0) (Vishik and Lyusternik, 1960).
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Consider an eigenvalue �0 with a Keldysh chain of

length k. This means that at p = p0 there exist an eigen-

function u0(x) and associated functions u1(x), u2(x), : : :,
uk�1(x), corresponding to the �0 and satisfying the equa-

tions and the boundary conditions

l0(u0) = �0u0; Us
0 (u0) = 0;

l0(ui) = �0ui + ui�1; Us
0 (ui) = 0;

i = 1; : : : ; k � 1; s = 1; : : : ;m:
(12)

The adjoint eigenvalue problem looks like

l�0(v0) = �0v0; V s
0 (v0) = 0;

l�0(vi) = �0vi + vi�1; V s
0 (vi) = 0;

i = 1; : : : ; k � 1; s = 1; : : : ;m:

(13)

The notion of Keldysh chain is an analogue of Jordan chain

of vectors in eigenvalue problems for di�erential operators

(Keldysh, 1951; Naimark, 1969; Gohberg & al., 1982).

Eigenfunctions and associated functions of adjoint eigen-

value problems (12), (13) are related by the following con-

ditions

(uj ; v0) = 0; j = 0; : : : ; k � 2;

(uk�1; v0) � (u0; vk�1) 6= 0; (14)

(uj�1; vi) � (uj ; vi�1); i; j;= 1; : : : ; k � 1 (15)

that can be proved by equations (12) and (13) with the use

of the relation (l(u); v) = (u; l�(v)) stated for the adjoint

operators.

Taking a variation of the vector of parameters p = p0+

�e+o(�) leads to the perturbation of eigenvalues and eigen-
functions. In the case of a multiple eigenvalue with the

Keldysh chain of length k the expansions of eigenvalues and
eigenfunctions contain terms with fractional powers of the

small parameter �j=k , j = 0; 1; 2; : : : (Vishik and Lyusternik,
1960):

� = �0 + �1=k�1 + �2=k�2 + �3=k�3 + : : :

u = u0 + �1=kw1 + �2=kw2 + �3=kw3 + : : :
(16)

Substituting expansions (9) and (16) into (1), we get ex-

pressions which determine the �rst order perturbations of

the eigenvalue �0 and the eigenfunction u0

l0(w1)� �0w1 = �1u0; Us
0 (w1) = 0;

l0(w2)� �0w2 = �2u0 + �1w1; Us
0 (w2) = 0;

: : :
l0(wk�1)� �0wk�1 =

�k�1u0 + �k�2w1 + : : :+ �1wk�2; Us
0 (wk�1) = 0;

(17)
3

l0(wk)� �0wk = (18)

�ku0+�k�1w1+ : : :+�1wk�1�l1(u0); Us

0 (wk) = �Us

1 (u0):

Functions wj can be found from equations (12) and (17)

in the form

wj = �j1uj +

j�1X
p=0


jpup; j = 1; : : : ; k � 1; (19)

where 
jp are arbitrary constants. Consider the inner prod-
uct of the function v0 with the left and right hand sides

of (18). Using then expression (19) for wj , equations (14),

(15), and Lagrange's formula (8), which in this case has the

form

(l0(wk)� �0wk; v0)� (wk ; l
�

0(v0)� �0v0) =

�
mX
s=1

Us

1 (u0)V
2m�s+1
0 (v0);

we get the coeÆcient �1 in the expansion of the eigenvalue

�

�k1 =
(l1(u0); v0)�

Pm

s=1 U
s
1 (u0)V

2m�s+1
0 (v0)

(uk�1; v0)
: (20)

With the use of equations (10) and (11) we can write ex-

pression (20) in the form (Seyranian, 1991)

�1 =
k
p
hfk; ei+ ihgk ; ei; (21)

where the real vectors fk and gk correspond to the k { fold

eigenvalue �0 at the point p = p0 and their components are

de�ned by

f j
k
+ igj

k
=

( @l

@pj
(u0); v0)�

Pm

s=1
@U

s

@pj
(u0)V

2m�s+1
0 (v0)

(uk�1; v0)
;

(22)

The right hand side of (21) takes k complex values. The

expression � = �0 + �1=k�1 + o(�1=k) describes the splitting
of the k { fold eigenvalue due to change of parameters along
a curve emitted in direction e, if the radicand in (21) is not

zero. In particular, when k = 1 equations (16), (21) describe

the behavior of a simple eigenvalue, and when k = 2 { the

splitting of a double eigenvalue �0 with the Keldysh chain

of length 2.
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NON-CONSERVATIVE STABILITY PROBLEMS

As an example of continuous non-conservative mechan-

ical system we consider a uniform elastic cantilever column,

Fig. 1. We assume that the non-conservative force P , which
can be represented as the sum of a tangential follower force

and a potential load, is acting at the free end of the col-

umn. Parameter � 2 [0; 1] measures the non-conservativity
of the force P . The case � = 1 means that the column is

loaded by purely tangential follower force (Beck's problem).

If � = 0, then the force P is potential (conservative). Let

us introduce the non-dimensional variables: the coordinate

x, the de
ection y, the time � , and the force q

x=X=Lc; y=Y=Lc; �=t=
p
�AL4

c
=EI; q=PL2

c
=EI:

We consider the transverse vibrations of the column in the

plane Oxy, Fig. 1. The di�erential equation describing

small in-plane vibrations of the column has the form (Ped-

ersen, 1977)

y0000(x; �) + qy00(x; �) + �y(x; �) = 0:

Dots mean di�erentiation with respect to time � and primes
denote di�erentiation w.r.t. coordinate x. Separating time

by y(x; �) = u(x)exp
�
i
p
��
�
, we get the eigenvalue prob-

lem (Pedersen, 1977)

l(u) = u0000 + qu00 = �u; (23)

U1(u) � u(0) = 0; U3(u) � u00(1) = 0;
U2(u) � u0(0) = 0; U4(u) � u000(1) + (1� �)qu0(1) = 0:

(24)

The corresponding adjoint eigenvalue problem looks like

l�(v) � v0000 + qv00 = �v; (25)

V 1(v) � �v(0) = 0; V 3(v) � v00(1) + �qv(1) = 0;
V 2(v) � v0(0) = 0; V 4(v) � �v000(1)� qv0(1) = 0;

(26)

and for the forms V 5 : : : V 8 we have

V 5 � v(1); V 7 � �v00(0)� qv(0);
V 6 � �v0(1); V 8 � v000(0) + qv0(0):

(27)

General solution of equation (23) is

u(x) = C1 cosh(ax) +C2 sinh(ax) +C3 cos(bx)+C4 sin(bx):
4

Figure 1. THE COLUMN LOADED BY A NONCONSERVATIVE FORCE.

Substituting the general solution into boundary conditions

(24) we obtain the condition of existing of a non-trivial so-

lution u(x) to eigenvalue problem (23), (24)

D(�; �; q) � (2�+ (1� �)q2)(1+ cosh(a) cos(b))+ (28)

+q(2��1)(q+ab sinh(a) sin(b)) = 0;

(Pedersen, 1977), where

a =

s
�q
2
+

r
q2

4
+ �; b =

s
q

2
+

r
q2

4
+ �:

Equation (28) gives eigenvalues �, depending on parameters
� and q.

The two-parameter mechanical system under consider-

ation belongs to the so called circulatory systems. It is

known that a circulatory system is stable if and only if all

the eigenvalues � are positive and semisimple. If all � are

real and some of them negative then the circulatory system

is statically unstable (divergence). Existence of at least one

complex eigenvalue means 
utter instability (Bolotin, 1963;

Ziegler, 1965).

Characteristic determinant D(�;p) is a smooth func-

tion of the spectral parameter � 2 R and the vector

p = (�; q). At any �xed value p = p0 the spectrum of the

operator L, which is de�ned by formulae (23) and (24), is

discrete (Naimark, 1969). The eigenvalues of the operator

can be simple or multiple roots of the function D(�;p0). If

at p = p0 the equation D(�;p0) = 0 has the k { fold real

root � = �0, then according to Malgrange's preparation
Copyright c
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theorem (Chow and Hale, 1982) there exists a neighbor-

hood U0 � R�Rn of the point (�0;p0), where D(�;p) has
the form

D(�;p) =

"
(�� �0)

k +

k�1X
i=0

(�� �0)
iai(p)

#
b(�;p): (29)

The functions a0(p), : : :, ak�1(p); b(�;p) are smooth, and
ai(p0) = 0, b(�0;p0) 6= 0.

Let for example �0 be a simple real root of the equa-

tion D(�0;p0) = 0. Then, due to (29) we can write

� = �0 � a0(p), and �0 remains real and simple in some

neighborhood of the point p0. Thus, if at p = p0 all the

eigenvalues of the operator L are positive and simple, then

p0 is the inner point of the stability domain of circulatory

system (23),(24). Similarly, the points of the parameter

plane, corresponding to the operators, which spectra con-

tain either simple zero eigenvalue or real double eigenvalue

with Keldysh chain of length 2, form smooth curves. It is

clear that the stability of the system in the vicinity of such

curves depends on behavior of the zero or the double eigen-

value due to change of parameters. According to (16), (21),

where we should put k = 1 or k = 2, the behavior of the

simple zero eigenvalue is described by the formula

� = �hf1; ei+ o(�); (30)

and the splitting of the real double �0 is governed by the

expression

� = �0 �
p
�hf2; ei+ o(�1=2): (31)

The inequality hf1; ei > 0 de�nes a set of such directions

e that the curves p = p(�) emitted along these vectors lie

in the stability domain, i.e. a tangent cone to the stabil-

ity domain. The eigenvalue �0 = 0 becomes negative at

hf1; ei < 0. Consequently, this inequality gives a tangent

cone to the static instability (divergence) domain. The

eigenvalue remains zero up to the terms of order �2 on the

curves, emitted in the directions e, such that hf1; ei = 0.

Thus, the equation hf1;p� p0i = 0 de�nes a tangent line

to the curve, where the operator L has simple zero eigen-

value. If other eigenvalues remain simple and positive along

this curve, then it forms a boundary between stability and

divergence domains. The vector f1 is a normal vector to

the boundary and is directed to the stability domain. An-

alyzing splitting of the double eigenvalue with the formula

(31) we can show that the points of the parameter plane,

corresponding to the operators with the real double eigen-

value with Keldysh chain of length 2, belong to the smooth
5

Figure 2. STABILITY DIAGRAM.

parts of the boundary between the 
utter domain and the

stability domain if �0 > 0 or divergence domain if �0 < 0.

In this case the vector f2 is normal to the boundary.

Possible values of parameters � and q at which the

system loses stability statically follows from equation (28)

where we put � = 0

cos (
p
q) =

�

� � 1
: (32)

Equation (32) de�nes the curve of simple zero eigenvalues,

the part of which forms the boundary between stability and

divergence domains on the plane of parameters (�; q). Cal-
culating the roots of characteristic equation (28) at di�erent

values q (when the parameter � is �xed) we �nd approxi-

mately the point, where two simple eigenvalues merge into

a double real eigenvalue. To obtain the 
utter boundary

it is necessary to solve this problem at di�erent values of

parameter �. The curves found subdivide the plane of pa-

rameters (�; q) into stability (S), 
utter (F), and divergence
(D) domains, Fig. 2.

It can be seen from Fig. 2 that 
utter domain has a

common boundary with stability and divergence domains.

Thus, the double eigenvalue changes its sign at some point of

the 
utter boundary. Remind that in accordance with (14)

the orthogonality condition
R 1
0
u0v0dx = 0 must be true at

the points of the 
utter boundary. This fact allows us to

�nd the point, corresponding to a double zero eigenvalue.

The eigenfunctions u0 and v0 of the zero eigenvalue can be

chosen real-valued and are de�ned by the formulae

u0 = sin(b)�xb cos(b)�sin(b) cos(bx)+cos(b) sin(bx); (33)
Copyright c
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v0 = 1� cos(bx); b =
p
q0: (34)

The functions u0 and v0 are solutions of eigenvalue problems
(23) { (26) at � = 0. After integration we come to the

transcendental equation, which the ordinate of the point

under study must satisfy

q0 = (
p
q0 � 2 sin(

p
q0))(

p
q0(1 + 2 cos(

p
q0))� 4 sin(

p
q0)):
(35)

The minimal element of the set of solutions of equation (35)

at q0 > 0 is q0 = 17:0695748. Substituting this solution into
equation (32), we �nd the corresponding value of the second

parameter �0 = 0:35431330.
Thus, at the point p0 = (0:35431330; 17:0695748) there

exists the double eigenvalue �0 = 0 with Keldysh chain of

length 2. The bifurcation of such eigenvalue is described by

formula (31). Substituting the di�erential expression l(u)
from (23), the forms U1; : : : ; U4 and V 5; : : : ; V 8 from (24),

(27) into formula (22), and using conditions (14), we get

the expressions for the normal vector to the boundary

f2 =

 
q0u

0

0(1)v0(1)R 1
0
u0v1dx

;

R 1
0
u000v0dx�(1��0)u00(1)v0(1)R 1

0
u0v1dx

!
:

(36)

To compute the vector f2 it is necessary to know the asso-

ciated functions u1, v1 as well as the eigenfunctions u0; v0,
corresponding to the double zero eigenvalue. Solving at

k = 2 and � = 0 boundary value problems (12), (13) with

di�erential expressions and boundary conditions from (23){

(26) we get the real-valued functions

u1=� cot(b)

6b
x3+

1

2b2
x2+

cot(b)(cos(bx)� 1) + sin(bx)

2b3
x+

+
(bx� sin(bx))(b+ 2b cos(b)� 2 sin(b))

2b4 sin2(b)
; (37)

v1=
x+x2

2b2
+
x�1
2b3

sin(bx)+
b2 cos(b)� sin2(b)

b4(b cos(b)� sin(b))
(sin(bx)�bx);

(38)

where b =
p
q0. Substituting eigenfunctions (33), (34) and

associated function (38) into expression (36), we �nd the

normal vector to the 
utter boundary at the point p0 =

(0:35431330; 17:0695748)

f2 = (�24288:8139;�1024:49949):

Knowledge of the normal vector allows us to study the

neighborhood of the point on the 
utter boundary in any
6

Table 1. SPLITTING OF THE DOUBLE ZERO EIGENVALUE NEAR THE

SINGULAR POINT p0 = (0:35431330; 17:0695748).

(��;�q) � : Eq:(39); Eq:(40) � : Eq:(28)

(0; 10�4)
Re�1;2=0

Im�1;2=�0:32007804

Re�1;2=�0:00151188

Im�1;2=�0:32007586

(0;�10�4)
�1=0:32007804

�2=� 0:32007804

�1=0:32159210

�2=� 0:31856833

(10�4
; 0)

Re�1;2=0

Im�1;2=�1:55848689

Re�1;2=0:02668744

Im�1;2=�1:55823291

(�10�4
; 0)

�1=1:55848689

�2=�1:55848689

�1=1:53205170

�2=�1:58543004

�10�5
e
�

�1=�0:01207531

�2=�0:000431084

�1=�0:01207543

�2=�0:000431085

10�5
e
�

�1=0:01207531

�2=0:000431084

�1=0:01207520

�2=0:000431082

direction e such that hf2; ei 6= 0. In particular, for two

orthogonal directions e = (1; 0) and e = (0; 1), we get

�=�155:848689
p
�0 � �; �=�32:0078037

p
q0 � q; (39)

appropriately. It is easy to see that in typical situation the

double zero eigenvalue splits either into complex-conjugate

pair or into two real eigenvalues, one of which is nega-

tive, Tab. 1. Thus, the normal vector f2 at the point

p0 is directed into the divergence domain. The inequal-

ity hf2; ei > 0 de�nes the tangent cone to this domain, and

hf2; ei < 0 de�nes the tangent cone to the 
utter domain,

Fig. 2. Only curves, emitted along the tangent vector to

the boundary can lead to stability domain from the singular

point. The direction of the appropriate tangent vector e
�

can be found by consideration of bifurcation of double zero

eigenvalue in the degenerate case hf2; e�i = 0. The answer

obtained with the use of the same perturbation technique is

e
�
= (1;�23:7079804). It can be seen from the Tab. 1 that

the eigenvalue �0 = 0 splits into two positive eigenvalues

(stability) only if parameters change in the direction e
�

�1 = 1207:53146�; �2 = 43:1083501�: (40)

Note that our technique gives a good approximation to

eigenvalues, Tab. 1.
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