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Gyroscopic stabilization of non-conservative systems
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Abstract

Gyroscopic stabilization of a linear conservative system, which is statically unstable, can be either improved or destroyed by weak damping and
circulatory forces. This is governed by Whitney umbrella singularity of the boundary of the asymptotic stability domain of the perturbed system.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The system under consideration is described by a linear differential equation of second order with the matrix coefficients

(1)ÿ + (δD + γ G)ẏ + (K + νN)y = 0,

where dot denotes time differentiation, y ∈ R
m, and real matrix K = KT corresponds to potential forces. Real matrices D = DT ,

G = −GT , and N = −NT are related to dissipative (damping), gyroscopic, and non-conservative positional (circulatory) forces
with magnitudes controlled by the parameters δ, γ , and ν, respectively. In two important limiting cases when either damping and
gyroscopic forces or damping and circulatory forces are absent, system (1) can be only marginally stable having its spectrum
on the imaginary axis of the complex plane. In many engineering and physical applications it is vital to know how the marginal
stability is improved or destroyed when these forces are taken into account [1–19]. The reason for the destabilization paradox in a
circulatory system perturbed by small velocity-dependent forces [3,4,12] is the existence of the Whitney umbrella singularity [20]
on its asymptotic stability boundary [11,15,17]. In this Letter we show that the stability boundary of system (1) with weak damping
and circulatory forces possesses the same singularity, which strongly influences the stability of gyroscopic systems with friction in
contact [2,7,8,13,14,18].

2. A gyroscopic system with weak damping and circulatory forces

We will restrict our subsequent considerations to the case when system (1) has only m = 2 degrees of freedom. Then, the matrices
of gyroscopic and circulatory forces have the form G = N = J, where

(2)J =
(

0 1
−1 0

)
.
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The matrices of damping and potential forces D and K are assumed to be given and fixed.
We notice that the study of the two-degrees-of-freedom system (1) makes sense because it contains important low-dimensional

models of actual dynamical systems, for example, the modified Maxwell–Bloch equations which are the normal form for rota-
tionally symmetric, planar dynamical systems and which describe tippe top inversion [7,8,13,14,18,19]. Moreover, the qualitative
conclusions obtained for two degrees of freedom remain valid in the general case, which can be investigated by perturbation ap-
proach developed in [5–8,11,15–17].

To study the stability of system (1) we consider its characteristic polynomial in the form given by the Leverrier–Barnett algo-
rithm [21]

(3)P(λ, δ, ν, γ ) = λ4 + δ tr Dλ3 + (
tr K + δ2 det D + γ 2)λ2 + (

δ(tr K tr D − tr KD) + 2γ ν
)
λ + det K + ν2.

We will concentrate on the case when system (1) is close to the conservative gyroscopic system

(4)ÿ + γ Gẏ + Ky = 0.

The values of the parameters δ and ν are assumed to be small, while the parameter γ can be arbitrary large. Our goal is to find and
analyze the asymptotic stability domain of system (1) in the space of the parameters δ, ν, and γ .

In the absence of the damping and circulatory forces (δ = ν = 0) the characteristic polynomial (3) has four roots −λ+, −λ−,
λ−, and λ+, where

(5)λ± =
√

−1

2

(
tr K + γ 2

) ± 1

2

√(
tr K + γ 2

)2 − 4 det K.

At γ = 0 system (4) is conservative. It is stable when the eigenvalues (5) are purely imaginary, which happens if tr K > 0 and
det K > 0 implying positive-definiteness of the 2 × 2 symmetric matrix K. Otherwise, the system is statically unstable (divergence)
due to the existence of positive real eigenvalues.

If γ �= 0, the eigenvalues (5) can be real (divergence), complex (dynamic instability or flutter) or purely imaginary (stability).
It is well known that for det K > 0 and tr K > 0 system (4) is stable at any γ ; for det K < 0 the gyroscopic system is statically
unstable [1]. In the case when det K > 0 and tr K < 0, which is equivalent to negative definiteness of the 2 × 2 matrix K, the
gyroscopic stabilization of the statically unstable conservative system is possible, see e.g. [8]. Indeed, let us write Eq. (5) in the
form

(6)λ± =
√

−1

2

(
γ 2 − 1

2

(
γ −2

0 + γ +2
0

)) ± 1

2

√(
γ 2 − γ −2

0

)(
γ 2 − γ +2

0

)
,

where the critical values γ ±
0 of the gyroscopic parameter γ are given by the expressions

(7)0 <

√
− tr K − 2

√
det K =: γ −

0 � γ +
0 :=

√
− tr K + 2

√
det K.

At γ = 0 there are in general four real roots ±λ± = ±(γ +
0 ± γ −

0 )/2 and system (4) is statically unstable. With the increase of
γ 2 the distance λ+ − λ− between two roots of the same sign is getting smaller. The roots are moving towards each other until they
merge at γ 2 = γ −2

0 with the origination of a pair of double real eigenvalues ±ω0 with the Jordan blocks, where

(8)ω0 = 1

2

√
γ +2

0 − γ −2
0 = 4

√
det K > 0.

Further increase of γ 2 yields splitting of ±ω0 to two couples of complex conjugate eigenvalues lying on the circle

(9)Reλ2 + Imλ2 = ω2
0.

The complex eigenvalues move along the circle until at γ 2 = γ +2
0 they reach the imaginary axis and originate a complex-conjugate

pair of double purely imaginary eigenvalues ±iω0. For γ 2 > γ +2
0 the double eigenvalues split into four simple purely imaginary

eigenvalues which do not leave the imaginary axis, Fig. 1.
Thus, system (4) with K < 0 is statically unstable for γ ∈ (−γ −

0 , γ −
0 ), it is dynamically unstable for γ ∈ [−γ +

0 ,−γ −
0 ] ∪

[γ −
0 , γ +

0 ], and it is stable (gyroscopic stabilization) for γ ∈ (−∞,−γ +
0 ) ∪ (γ +

0 ,∞), see Fig. 1. The values of the gyroscopic
parameter ±γ −

0 define the boundary between the divergence and flutter domains while the values ±γ +
0 define the flutter-stability

boundary. In the following, we investigate how do small damping and circulatory forces blow-up the stability domain of conserva-
tive gyroscopic system (4) with K < 0 in the space of the parameters δ, ν, and γ .

As it has been established in [20], the boundary of the asymptotic stability domain of a multiparameter family of real matrices is
not a smooth surface. Generically, it possesses singularities corresponding to multiple eigenvalues with zero real part. In particular,
for real matrices depending on three parameters, two different pairs of simple purely imaginary eigenvalues originate a singularity
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Fig. 1. Stability diagram of a conservative gyroscopic system with K < 0 (left) and the corresponding trajectories of the eigenvalues in the complex plane for the
increasing parameter γ > 0 (right).

Fig. 2. Whitney umbrella singularities on the stability boundary of the non-conservative system (1) with K < 0. The arms of the umbrellas are exactly stability
domains of a conservative gyroscopic system, see Fig. 1. The condition δ tr D > 0 selects the stable pockets of the umbrellas (deadlocks of an edge).

of the stability boundary, which is shaped as a dihedral angle in the parameter space. A pair of double purely imaginary eigenvalues
with the Jordan block corresponds to the singularity deadlock of an edge, which is a half of the Whitney umbrella surface [20].

Considering the asymptotic stability domain of system (1) in the space of the parameters δ, ν and γ we know that the γ -
axis corresponds to the unperturbed conservative gyroscopic system. The parts of this axis that belong to the stability domain of
system (4) and correspond to two different pairs of simple purely imaginary eigenvalues, form edges of dihedral angles, bounding
the asymptotic stability domain of system (1). At the points ±γ +

0 of the γ -axis, corresponding to the stability-flutter boundary of
system (4) there exists a pair of double purely imaginary eigenvalues with the Jordan block. Qualitatively, the asymptotic stability
domain of system (1) in the space (δ, ν, γ ) near the γ -axis looks like a dihedral angle which becomes more acute while approaching
the points ±γ +

0 . At these points the angle shrinks forming the deadlock of an edge, see Fig. 2.
Below with the use of the Routh–Hurwitz criterion we find exact expressions for the asymptotic stability domain in the space of

the parameters δ, ν, and γ as well as its first-order approximations in the vicinity of the γ -axis, and show that the latter are reduced
to the canonical equation of the Whitney umbrella.

The Routh–Hurwitz criterion in the form of Liénard and Chipart [22] for polynomial (3) with det K > 0 is presented by the
inequalities

(10)δ tr D > 0,

(11)tr K + δ2 det D + γ 2 > 0,

(12)−a(δ, γ )ν2 + 2δγ b(δ, γ )ν + δ2c(δ, γ ) > 0,

where

a(δ, γ ) = 4γ 2 + δ2 tr D2,

b(δ, γ ) = γ 2 tr D − tr K tr D + 2 tr KD + δ2 tr D det D,

(13)c(δ, γ ) = (tr K tr D − tr KD)
(
tr KD + δ2 tr D det D + γ 2 tr D

) − det K tr D2.



O.N. Kirillov / Physics Letters A 359 (2006) 204–210 207
Solving the quadratic equation we write stability condition (12) in the form

(14)
(
ν − ν−δ

)(
ν − ν+δ

)
< 0, ν±(δ, γ ) = γ b(δ, γ ) ± √

γ 2b(δ, γ )2 + a(δ, γ )c(δ, γ )

a(δ, γ )
.

Conditions (10), (11), and (14) define the asymptotic stability domain of system (1) in the space (δ, ν, γ ).
Let us consider the asymptotic stability domain in the plane (δ, ν) in the vicinity of the origin. From the structure of the coeffi-

cients (13) and expressions (5)–(7) it follows that the Taylor expansions of the functions ν±(δ, γ ) for the fixed γ �= 0 and small δ

have the form ν±(δ, γ ) = ν±
0 (γ ) + O(δ2) with

(15)ν±
0 (γ ) =

2 tr KD + tr D
(
γ 2 + 1

2 (γ −2
0 + γ +2

0 ) ±
√

(γ 2 − γ −2
0 )(γ 2 − γ +2

0 )
)

4γ
.

The coefficients ν±
0 are real for γ 2 � γ +2

0 . In this case, the domain given by the conditions (14) is approximated by a cone in the
vicinity of the origin in the plane (δ, ν)

(16)
{
ν−

0 δ < ν < ν+
0 δ

} ∪ {
ν+

0 δ < ν < ν−
0 δ

}
.

For γ tending to infinity, the angle of the cone is expanding to π/2, while for γ approaching the critical values ±γ +
0 it is becoming

more acute, and at γ = ±γ +
0 it shrinks to a line

(17)ν = ± (γ +2
0 − ω2

0) tr D + tr KD

2γ +
0

δ.

Assuming for simplicity det D � 0, we get

(18)γ 2 � γ +2
0 = − tr K + 2

√
det K > − tr K > − tr K − δ2 det D,

and condition (11) is satisfied. Then, the stable skirt of the cone (16) is selected by the inequality (10). Returning to the three-
dimensional picture, one sees that conditions (16) define two hypersurfaces intersecting along the γ -axis, so that the angle between
them at every particular value of γ is getting smaller while approaching the points ±γ +

0 , as shown in Fig. 2. The parts of this
surface lying in the half-space δ tr D > 0 are a linear approximation of the boundary of the asymptotic stability domain.

The critical value of the gyroscopic parameter γcr(δ, ν) at which the non-conservative system (1) loses stability can deviate
significantly from that of the conservative gyroscopic system (γ +

0 ). To get an estimate of γcr(δ, ν) we consider the formulas (15)
and (16) in the vicinity of the point (δ = 0, ν = 0, γ = γ +

0 ). Leaving only the terms which are constant or proportional to
√

�γ =√
γ − γ +

0 in both the numerator and denominator of the expression (15) we write the inequality (16) in the form

(19)γ > γ +
cr (δ, ν), γ +

cr (δ, ν) = γ +
0 + 2γ +

0

[
((γ +2

0 − ω2
0) tr D + tr KD)δ − 2γ +

0 ν

2δω0γ
+
0 tr D

]2

.

It is remarkable that the expression for γ +
cr has the form Z = X2/Y 2, which is a canonical equation for the singular surface

known as the Whitney umbrella [20]. Expression (19) explicitly shows that the function γ +
cr (δ, ν) is non-differentiable at the origin

and depends only on the ratio β = ν/δ. Therefore, the limit of γ +
cr (δ, ν) at the origin is not defined and strongly depends on

the direction of approaching given by β . Most of the directions β give the limit value γ +
cr (β) > γ +

0 . The latter means that the
critical “angular velocity” γ generally jumps up for infinitely small δ and ν. Such “jumps” illustrate high sensitivity of the critical
parameters responsible for the onset of the flutter instability (in particular, the squeal of a rotating disk in an automotive brake [18])
to small imperfections in non-conservative gyroscopic systems.

We have obtained expressions (15) and (19) by direct analysis of the Routh–Huritz conditions, which is effective only in low
dimensions of the state space. More general way is to use methods based on eigenvalue perturbation [5–8,11,15–17]. Indeed,
perturbing the gyroscopic system (4) by small damping and circulatory forces yields an increment to purely imaginary eigenvalue
iω(γ )

(20)λ = iω − iωu∗Duδ + u∗Juν

2iωu∗u
+ o(δ, ν),

where u is an eigenvector corresponding to iω

(21)u(γ ) = C

(−iωγ − k12
−ω2 + k11

)
,

C is a complex coefficient, and the asterisk denotes Hermitian conjugate.
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Since D is a real symmetric matrix and J is a real skew-symmetric matrix, the first order correction to iω(γ ) is a real quantity.
Consequently, the expression

ν = −iω
u∗Du
u∗Ju

δ = d11(ω
2γ 2 + k2

12) + 2d12k12(ω
2 − k11) + d22(ω

2 − k11)
2

2γ (ω2 − k11)
δ

(22)= d11(ω
2 − k11)(ω

2 − k22) + 2d12k12(ω
2 − k11) + d22(ω

2 − k11)
2

2γ (ω2 − k11)
δ = tr KD − tr K tr D + tr Dω2

2γ
δ,

gives a linear approximation to the domain of asymptotic stability in the plane (δ, ν) for arbitrary γ . Taking into account formulas
(6) and (7), we transform expression (22) to the form ν = ν±

0 δ, where the coefficients ν±
0 are given by Eq. (15), which implies

the estimate (19). Note that in higher dimensions of the state space, exact expressions for eigenvalues and eigenvectors of the
unperturbed gyroscopic system such as (6) and (21) usually cannot be found, and eigenvalue perturbation methods give only
estimates like (19), see [15,17].

Thus, the surfaces ν = ν+(δ, γ )δ and ν = ν−(δ, γ )δ in the vicinity of the points (0,0,±γ +
0 ) are represented by two Whitney

umbrellas. The arms of the umbrellas are the intervals of the γ -axis (−∞,−γ+) and (γ+,∞) which are stability domains of
conservative gyroscopic system (4). The domains of the gyroscopic stabilization of non-conservative system (1) with small damping
and circulatory forces are given by the pockets of the two Whitney umbrellas, as shown in Fig. 2.

3. Stability of a gyropendulum with stationary and rotating damping

As an example we consider the Crandall gyropendulum [8]. The pendulum is an axisymmetric rigid body pivoted at a point O

on the axis as shown in Fig. 3. When the axial spin Ω is absent, the upright position is statically unstable. When Ω �= 0 the body
becomes a gyroscopic pendulum. Its primary parameters are its mass m, the distance L between the mass center and the pivot point,
the axial moment of inertia Ia , and the diametral moment of inertia Id about the pivot point. The gravity acceleration is denoted
by g.

It is assumed that a drag force proportional to the linear velocity of the center of mass of the gyropendulum acts at the center
of mass to oppose that velocity (stationary damping with the coefficient bs ). Additionally, it is assumed that a rigid sphere con-
centric with the pendulum tip O , is attached to the pendulum and rubs against a fixed rub plate. The gyropendulum is supported
frictionlessly at O , while a viscous friction force acts between the larger sphere and the rub plate, being responsible for the rotating
damping with the coefficient br . The linearized equations of motion for the gyropendulum in the vicinity of the vertical equilibrium
position derived in [8] have the form (1) with the matrices G, D, K, and N given by the expressions

(23)γ G =
(

0 ηΩ

−ηΩ 0

)
, δD =

(
σ + ρ 0

0 σ + ρ

)
, K =

(−α2 0
0 −α2

)
, νN =

(
0 ρΩ

−ρΩ 0

)
.

The system depends on the spin Ω and four parameters

(24)η = Ia

Id

, σ = bs

Id

, ρ = br

Id

, α2 = mgL

Id

,

where α is the non-spinning pendulum frequency and η is responsible for the shape of the gyropendulum: for η < 1 the pendulum
is prolate, and for η > 1 it is oblate. Parameters σ and ρ correspond to the stationary and rotating damping respectively. We notice
that the stationary damping contributes only to the matrix δD while the rotating damping is responsible also for the appearance
of the non-conservative positional forces described by the skew-symmetric matrix νN. Thus, the Crandall gyropendulum can be
treated as a conservative gyroscopic system perturbed by weak damping and non-conservative positional forces.

For σ = ρ = 0 the pendulum is stabilized by gyroscopic forces for Ω2 > Ω+2
0 . At the points of the stability boundary Ω =

±Ω+
0 the spectrum of the gyropendulum has a pair of double purely imaginary eigenvalues ±iω0, where according to (7) and (8)

Fig. 3. Gyroscopic stabilization domain of the Crandall gyropendulum is a half of the Whitney umbrella.
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Ω+
0 = 2α/η and ω0 = α. Writing the Liénard–Chipart conditions for the characteristic polynomial of the Crandall gyropendulum

with the damping forces we find the inequalities defining the asymptotic stability domain

(25)σ + ρ > 0,

(26)η2Ω2 + (σ + ρ)2 − 2α2 > 0,

(27)Ω2 − (σ + ρ)2α2

σηρ + ηρ2 − ρ2
> 0.

Since the inequality (27) implies

(28)Ω2 > Ω+2
0 + 1

ρ

α2

η2

(ση + ρ(η − 2))2

ση + ρ(η − 1)
� Ω+2

0 ,

the asymptotic stability domain is given only by the conditions (25) and (27), which can be written in the form

(29)Ω > Ω+
cr (ρ,σ ), Ω < Ω−

cr (ρ,σ ), σ + ρ > 0,

where the critical values of the spin Ω as a function of the two damping parameters are

(30)Ω±
cr (ρ,σ ) = ± (σ + ρ)α√−ρ2 + ρ2η + ρησ

.

Eqs. (30) describe two surfaces in the space of the parameters ρ, σ , and Ω . Both surfaces have Whitney umbrella singularities at
the points (0,0,±Ω+

0 ). The surface Ω+
cr (ρ,σ ) is shown in Fig. 3 for α = 1 and η = 2. The inequality (25) selects the stable pocket

of the Whitney umbrella. In spite of the fact that the formulae for the critical spin analogous to (30) were found by Crandall with
the use of a perturbation technique, the singular nature of the asymptotic stability domain was not recognized in [8].

As it follows from the expressions (28), Ω+
cr � Ω+

0 and Ω−
cr � −Ω+

0 , which can be interpreted as the destabilization of the
conservative gyroscopic system by the damping and non-conservative positional forces. The critical loads coincide only for the
specific ratios of the coefficients of the stationary and rotating damping

(31)
bs

br

= σ

ρ
= 2 − η

η
= Ω+

0

ω0
− 1

in agreement with the result obtained in [8].

Conclusions

For a general linear mechanical system with two degrees of freedom the effect of weak damping and non-conservative positional
forces on the gyroscopic stabilization has been studied. It was found that the boundary of the gyroscopic stabilization domain
of the non-conservative system possesses Whitney umbrella singularity. Explicit analytical approximations of the boundary near
the singularity were derived. The singularity is responsible for the high sensitivity of the critical gyroscopic parameter to small
variations of the matrices of damping and circulatory forces. The price for the gyroscopic stabilization of a non-conservative
system is generally higher values of the gyroscopic parameter and non-trivial choice of balance of damping and non-conservative
positional forces. Finally, it was established that the stability boundary of the Crandall gyropendulum, considered as a mechanical
example, consists of two pockets of two Whitney umbrellas.
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