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Modeling and Stability Analysis
of an Axially Moving Beam With
Frictional Contact1
This paper considers a moving beam in frictional contact with pads, making the system
susceptible for self-excited vibrations. The equations of motion are derived and a stability
analysis is performed using perturbation techniques yielding analytical approximations
to the stability boundaries. Special attention is given to the interaction of the beam and
the rod equations. The mechanism yielding self-excited vibrations does not only occur in
moving beams, but also in other moving continua such as rotating plates, for example.
�DOI: 10.1115/1.2755166�
Introduction
In many engineering applications, self-excited vibrations are an

nwanted phenomenon. They occur when instabilities arise in a
ystem. There can be various reasons for these instabilities. In this
aper, we are particularly interested in self-excited vibrations
aused by friction. An example for oscillations of this type is the
quealing of disk brakes considered by some of the authors in a
revious paper �1�, where a discretization approach was used. In
he present paper, we give a continuous approach for the traveling
eam with clamped boundary conditions that is in frictional con-
act with two idealized brake pads. An engineering application for
he model might be traveling belts, band saws, etc.

Many contributions on axially moving media can be found in
he literature. A fundamental work is by Wickert and Mote �2�
ho investigate the moving string and the moving beam showing
athematical properties and calculating numerically the spectrum

f the beam for simply supported and clamped boundary condi-
ions. In a second paper �3�, they develop a complex modal analy-
is for continuous systems using a first-order partial differential
quation with respect to time. A similar approach has been devel-
ped for continuous systems by Meirovitch in �4�, which can also
e extended to continuous gyroscopic systems as done in �5�. In
6�, Parker investigates the eigenvalues of gyroscopic continua in
he vicinity of the critical speeds using perturbation techniques on
he first-order system. In particular, he analytically calculates the
ritical speeds for the simply supported moving beam. In a paper
y Seyranian and Kliem �7�, the splitting of the double zero ei-
envalues at the critical speeds of the beam is investigated using
erturbation techniques directly on the operator polynomial.

In all the papers cited above, the boundary conditions were
elf-adjoint. Only a few authors consider the influence of noncon-
ervative forces on axially moving continua. For example, Cheng
nd Perkins study the stability of a string sliding through an elas-
ically supported dry friction guide �8�. However, in their model,
he friction forces only affect the tension of the string and, there-
ore, no instability occurs before the first critical speed. A related
roblem is the stationary beam under moving frictional forces
iscussed in �9�. In the literature about rotating plates, more pa-
ers dealing with nonconservative forces can be found, for ex-
mple, we mention �10,11�.
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For the traveling beam considered in our paper, the frictional
contact makes the problem nonconservative and introduces inter-
mediate transition conditions into the boundary value problem.
Special attention is given to the coupling of beam and rod equa-
tions using the assumptions of the Euler-Bernoulli theory in the
linear elasticity problem and taking into account the exact contact
kinematics of the beam and the pads.

We obtain a distributed gyroscopic system with dissipative and
nonconservative positional forces originating from the pads. Since
the gyroscopic stability is highly sensitive to the influence of the
dissipative and especially nonconservative positional forces �see
�12–22��, the stability analysis needs more sophisticated tools than
the ones used in the previous papers. Recently, Kirillov and Sey-
ranian �23–25� developed an effective method of analyzing stabil-
ity boundaries and its singularities for distributed nonconservative
systems based on the bifurcation theory of eigenvalues of two
point non-self-adjoint boundary value problems with the differen-
tial expression and boundary conditions depending on the spectral
parameter and multiple physical parameters. We develop this ap-
proach further to study boundary value problems with intermedi-
ate transition conditions.

The outline of the paper is as follows. We first derive the model
from the theory of linear elasticity using the principle of virtual
work. The stability of the system is then investigated by interpret-
ing damping and nonconservative forces as perturbations. We use
a discretization approach for the stability analysis of a nonper-
turbed conservative gyroscopic system; then, based on numeri-
cally obtained data, we perform a perturbation analysis directly on
the boundary value problem of the nonconservatively loaded
beam.

2 Derivation of the Mathematical Model
We consider an axially moving Euler-Bernoulli beam sliding

through two idealized massless brake pads with constant velocity
q̇0; see Fig. 1. We introduce a spatially fixed frame with unit
vectors ex, ey, and ez and a frame with unit vectors ex̃, eỹ, and ez̃
moving with the undeformed configuration of the beam. The beam
is pretensioned with the force � before applying the pads. As
usual in Euler-Bernoulli theory, we neglect the stresses �y, �z, and
�yz, and assume that the cross sections of the beam stay planar and
perpendicular to the neutral plane. The mass of a cross section is
assumed to be concentrated on the neutral plane and is assumed to
be constant between the two supports. Each point on the neutral
plane has a displacement u�x , t� in the x direction and w�x , t� in
the z direction counted out of the prestressed configuration with

no pads in contact with the beam.
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To derive the equations of motion, we use the principle of vir-
ual work with the assumptions stated above giving

�
0

L�
A

��
d2

dt2pM · �pM + ��0 + E�����dA dx = �
i

�Fi · �pi�

�1�

or an extensible Euler-Bernoulli beam, where

� = u� +
1

2
w�2 − zw� �2�

s the strain and �0 is the pretension of the beam. The forces Fi
re the contact forces between the pads and the beam and �pi are
he virtual velocities/displacements of the contact points on the
eam. In order to calculate the contact forces, we have to consider
he contact kinematics.

2.1 Kinematics. A point on the neutral fiber is

pM�x,t� = �x + u�x,t��ex + w�x,t�ez �3�

here x=q0�t� due to the kinematic constraint. When differentiat-
ng pM�x , t� with respect to time, we therefore have

d

dt
pM�x,t� = �q̇0 + ut�x,t� + q̇0ux�x,t��ex + �wt�x,t� + q̇0wx�x,t��ez

�4�

ince cross sections stay planar and perpendicular to the neutral
lane, it is possible to describe points on the upper surface of the
eam through points on the neutral fiber, which is parametrized by

f�x,z,t� = z − w�x,t� = 0 �5�

he position vector of a point on the upper surface of the beam is
iven by

p�x,t� = �x + u�x,t��ex + w�x,t�ez −
h

2
e��x,t� �6�

here

e��x,t� =
�f�x,z,t�
	�f�x,z,t�	

�7�

s the gradient vector to the point x on the neutral plane. The
osition vector of the point currently in contact with the upper pad
s given by

�xP + u�xP,t��ex + w�xP,t�ez −
h

2
e��xP,t� �8�

here since we work in Lagrangian coordinates xP=a+�xP is the
osition of the point on the neutral plane corresponding to the
oint currently in contact with the upper pad, as shown in Fig. 2.

From geometrical considerations, it is seen that �xP= �̄xP

a

q0

ex
ey

ez

ex̃

eỹ

ez̃

µ

ρ,A,E, I, L, h, κ

q̇0

k

k

d

d

Fig. 1 Axially moving beam
u�a+�xP , t�, where
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�̄xP = −
h

2
sin�arctan w��a + �̄xP,t�� �9�

=−
h

2

w��a + �̄xP,t�

1 + w��a + �̄xP,t�2

�10�

that is a fixed point equation of the type

�̄xP
k+1 = g��̄xP

k� �̄xP
0 = 0 �11�

Since 	w��x , t� 	 �1 we obtain

	g�x� − g�y�	 = � h

2

w��x,t�

1 + w��x,t�2

−
h

2

w��y,t�

1 + w��y,t�2� 	 1

�12�

and therefore the mapping g is contracting. The Banach fixed

point theorem is therefore applicable and �̄xP can be iteratively
determined to arbitrary precision. The quantity �xP is now deter-

mined from �xP= �̄xP+u�a+�xP , t�, which is also a fixed point
equation that can be solved using the Banach fixed point theorem.
For the lower contact point, we proceed similarly. The position
vectors and, hence, the virtual velocities of the contact points, can
thus be determined to arbitrary precision.

2.2 Contact Forces. The contact forces between the surface
of the beam and the pads have already been stated in �1�, but are
restated here for the convenience of the reader.

The normal force is perpendicular to the surface of the beam
and is therefore given by:

NP = − NP̄ = NPe��xP,t� �13�

We assume the applicability of Coulomb’s law of friction, and
therefore the friction force has the magnitude RP=
NP, and is
directed against the relative velocity between the point P on the

beam and the point P̄ on the pad �see Fig. 3�, so that

RP = − RP̄ = RP

vP̄ − vP

	vP̄ − vP	
�14�

Throughout the paper we exclude stick slip, which in the linear
case, is assured by the condition

	vP̄ − vP	 � 0 ⇒ 	u̇�a,t�	 + 	ẇ��a,t�	
h

2
	 q̇0 �15�

From a force balance at the upper pad

0 = NP cos � − RP sin � − N0 + kzP̄ + dżP̄ �16�

where zP̄ is the vertical displacement of the point P̄ on the pad,

exey

ez

∆̄x
u(xP, t)

∆̄xP

h

axP

Fig. 2 Contact kinematics
with
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� = arctan�w��xP,t�� �17�

e can now calculate the magnitude of NP, so that the contact
orces are completely defined. Since in Euler-Bernoulli theory the
ross sections of the beam stay planar, we can replace NP and RP
y an equivalent system of loads consisting of the force BPex
APez and a torque MP, both acting on the neutral fiber. Again, we
an proceed similarly for the lower contact point Q. The linear-
zed expressions for the forces and torques are then

BP = − 
�N0 − kw�xP,t� − dẇ�xP,t�� − N0�1 + 
2�w��xP,t�
�18�

AP = N0 − kw�xP,t� − dẇ�xP,t� �19�

MP =
1

2
h�
2N0w��xP,t� + 
N0 − k
w�xP,t� − d
ẇ�xP,t��

�20�

BQ = − 
�N0 + kw�xQ,t� + dẇ�xQ,t�� + N0�1 + 
2�w��xQ,t�
�21�

AQ = − N0 − kw�xQ,t� − dẇ�xQ,t� �22�

MQ =
1

2
h�
2N0w��xQ,t� − 
N0 − k
w�xQ,t� − d
ẇ�xQ,t��

�23�

2.3 Boundary Value Problem. Due to the contact forces, the
erivatives w� and w� will not be continuous at the points xP and
Q, i.e., their left and right limits do not coincide; for example
��xP

− , t��w��xP
+ , t�. Therefore, we have to consider three different

egments of the beam as shown in Fig. 4.
Carrying out the variations in �1� requiring that the functions

atisfy the geometric boundary conditions and applying the main
heorem of variational calculus, we obtain a boundary value prob-

NP

RP

NP

RP

P

P̄

N0 − k(zP̄ + h/2) − d żP̄

Q̄

Q

NQ

RQNQ

RQ

N0 + k(zQ̄ − h/2) + d żQ̄

Fig. 3 Contact forces
em for the beam in w
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�A�ẅ�x,t� + 2q̇0ẇ��x,t� + �q̇0
2 −

�

�A

w��x,t�� + EIwIV�x,t� = 0

�24�
with boundary conditions

w�0,t� = w�L,t� = 0 w��0,t� = w��L,t� = 0 �25�
and transition conditions

AP,Q + EI�w��xP,Q
− ,t� − w��xP,Q

+ ,t�� = 0 �26�

MP,Q + EI�w��xP,Q
− ,t� − w��xP,Q

+ ,t�� = 0 �27�

Furthermore, we get a boundary value problem for the rod in u,
which consists of the partial differential equation

�Aü�x,t� + 2q̇0�Au̇��x,t� + �q̇0
2�A − EA�u��x,t� = 0 �28�

with boundary conditions

u�0,t� = u�L,t� = 0 �29�
and transition conditions

EA�u��xP,Q
− ,t� − u��xP,Q

+ ,t�� − BP,Q = 0 �30�
Two important facts are to be noted: first of all, from Eqs. �19� and
�20� we observe that u does not occur in the boundary value
problem of the beam and the beam equations can be solved inde-
pendently of the boundary value problem for the rod. However,
vibrations of the beam very well excite the rod as is seen from
�18� and �21�. That means the stability behavior of the system is
determined by the beam equations, at least beyond the critical
speed for the rod. At a first view, this one-sided coupling might be
surprising, since in conservative problems, this phenomenon can-
not occur. The present problem is, however, nonconservative due
to the friction forces and it can be seen that the coupling vanishes
for 
=0. The second fact to be noted is that the boundary value
problems are nonconservative because of the transition conditions
through which the contact forces between beam and pads enter the
system.

Since segment II of the beam is very small, it is possible to
simplify the transition conditions by expanding terms containing
xP or xQ around x=a; for example

u��xP
+,t� = u��a,t� + O�w2� �31�

The transition conditions at xP and xQ then simplify to a single
transition condition at x=a. The transition conditions �26�–�30�
are thus replaced by

− +

NP

RP

NQ

RQ

segment I II III

Fig. 4 Segments of the beam
A + EI�w��a ,t� − w��a ,t�� = 0 �32�
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M + EI�w��a−,t� − w��a+,t�� = 0 �33�

B − EA�u��a−,t� − u��a+,t�� = 0 �34�

here A=AP+AQ=−2kw�a , t�−2dẇ�a , t�, M =MP+MQ

h�N0
2w��a , t�−k
w�a , t�−d
ẇ�a , t�� and B=BP+BQ=−2
N0.
he simplification of the transition conditions therefore leads to a
omplete uncoupling of the boundary value problems for the
eam and the rod.

2.4 Discretization. In �1�, the authors investigated the travel-
ng beam using a Ritz discretization approach. We will use these
iscretized equations and compare them to the results obtained
rom the continuous approach taken in this paper. Using the Ritz
xpansion in �1�

w�x,t� = �
i=1

I

Wi�x�qi�t� �35�

ields nonlinear equations of motion q̈= f�q , q̇�, which can be lin-
arized to

Mq̈ + �G + D�q̇ + Kq = 0 M = MT G = − GT

D � DT K � KT �36�

here

mji = �A�
0

L

WjWidx �37�

gji = �Aq̇0�
0

L

�WjWi� − Wj�Wi�dx

�38�
dji = d�2Wj�a�Wi�a� + h
Wj��a�Wi�a��

kji = �� − �Aq̇0
2��

0

L

Wj�Wi�dx + EI�
0

L

Wj�Wi�dx + 2kWj�a�Wi�a�

− hk
Wj��a�Wi�a� + hN0�1 + 
2�Wj��a�Wi��a�

−
h2N0


2
Wj��a�Wi��a� �39�

sing a result of Karapetjan �16� and Lakhadanov �19� in �1�, it
as concluded that in the undamped case d=0, the stability do-
ain of the nonconservative gyroscopic system is a set of measure

ero in the space of the system parameters. Provided that the Ritz
xpansion converges to the solution, which is the case choosing
ppropriate shape functions, this result carries over to the continu-
us problem. It would now be feasible to perform a perturbation
nalysis of these discretized equations. However, we prefer to
erform a perturbation analysis directly on the continuous system,
sing the discretization only to calculate the spectrum of the un-
erturbed problem.

Before continuing with the investigation of the unperturbed
roblem, we draw the reader’s attention to a difference between
he continuous approach used to derive the boundary value prob-
em, and the Ritz discretization approach taken from �1�. From the
erivation of the simplified boundary value problem in Sec. 2.3, it
s clear that, since �xP,Q occur only in the arguments of u and w,
nd are expandable in u and w without having a constant part,
hey do in fact not enter the simplified boundary value problem.
owever, when considering the virtual work of the contact forces
n the Ritz expansion, we calculated
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�WA = AP�
i=1

I

Wi�a + �xP��qi�t� + AQ�
i=1

I

Wi�a + �xQ��qi�t�

�40�
where we expanded

Wi�a + �xP� = Wi�a� + Wi��a��xP + ¯ = Wi�a�

+ Wi��a�
h

2�
j=1

I

�Wj��a�qj + O�qj
2�� �41�

without considering the stretching of the beam. Due to the con-
stant terms in AP and AQ, we get terms of the form
hN0Wj��a�Wi��a� in the discretized equation of motion, that would
not have shown up neglecting �xP,Q. Similar terms arise from
MP,Q. The explanation for this lies in the fact that in the Ritz
discretization, the energy expressions were considered up to sec-
ond order in the qi, whereas to derive the boundary value problem,
a purely geometric linearization was performed with respect to w
and u. To get comparable results from the perturbation approach
on the discretized system, it would therefore be appropriate to
neglect the influence of �xP,Q and perform a geometric lineariza-
tion. Since we only need the discretization for the unperturbed
problem, the corresponding equations are not stated separately.

3 Stability Analysis
In this section, we perform a stability analysis of the beam with

the simplified transition conditions �32� and �33�. Since the trans-
verse vibrations of the beam are of major interest in applications,
we concentrate on their investigation.

We assume that as in many squeal problems, the friction and
damping forces coming from the pads are small compared to in-
ertia, gyroscopic, and restoring terms. Therefore, we multiply all
forces coming from the pads with � if they come from damping in
the pad, and with 
 otherwise, with 
 and � serving as weights for
their contribution. Introducing the dimensionless time �=�t and
length x̄=x /L where �2=EI /�AL4 yields the dimensionless pa-
rameters

ā =
a

L
�̄ =

q̇0

L�
h̄ =

h

L
k̄ =

kL3

EI
d̄ =

�dL3

EI
N̄0 =

N0L2

EI

�̄ =
�L2

EI
�42�

Using the ansatz w�x̄ , t�=w�x̄�e�t where, after separation of time,
we use the same symbol w for notational simplicity, the boundary
value problem can now be stated as

L�w� = �2w + 2�̄�w� + ��̄2 − �̄�w� + wIV = 0 �43�

where L is a linear differential operator with boundary and tran-
sition conditions

U1�w� = U1
0�w� + 
U1

1
�w� + �U1
1��w� = 0, . . . , U8�w� = U8

0�w�

+ 
U8
1
�w� + �U8

1��w� = 0 �44�
where

Ui
0�w� = �0w�0� + �1w��0� + ¯ + �7w��1�

Ui
1
,��w� = �0


,�w�ā −� + �1

,�w��ā −� + ¯ + �7


,�w��ā +� �45�

are linear forms in w�x̄� and its derivatives taken at x̄=0, x̄=1, x̄
= ā−, and x̄= ā+. In our case, they read

U1
0 = w�0� U2

0 = w��0� U3
0 = w�ā −� − w�ā +� �46�

U4
0 = w��ā −� − w��ā +� U5

0 = w��ā −� − w��ā +� U6
0 = w��ā −�

¯ +
− w��a � �47�
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U7
0 = w�1� U8

0 = w��1� �48�

or the unperturbed problem, and the perturbations are given by

U5
1
 = − h̄k̄
w�ā� + h̄N̄0
2w��ā� U5

1� = − h̄d̄
�w�ā� �49�

U6
1
 = − 2k̄w�ā� U6

1� = − 2d̄�w�ā� �50�

ther forms Ui
1
,� being zero.

We now derive the boundary value problem adjoint to �43� and
44�. We multiply the differential expression L�w� by a function
�x̄� and integrate over the intervals �0, ā� and �ā ,1� since we are
lanning to use integration by parts and some of the derivatives of
�x̄� are not continuous at x̄. Using the notation �w ,v�
�0

ā −
wv̄dx̄+�ā+

1 wv̄dx̄, v̄ being the complex conjugate to v,we ob-
ain

�L�w�,v� = �w,L*�v�� + �
i=1

16

Ui�w�V17−i�v� �51�

here we expressed the boundary terms and terms occurring at
= ā − and x̄= ā+ in terms of linear forms U1 , . . . ,U8, which are, in
act, the boundary and transition conditions, and supplementary
orms U9 , . . . ,U16, such that we can express all of the boundary
nd transition terms uniquely in the Ui.

From �51� we obtain the differential equation for the adjoint
roblem

L*�v� = �̄2v − 2�̄�̄v� + ��̄2 − �̄�v� + vIV = 0 �52�

ith boundary conditions

V1�v� = V1
0�v� + 
V1

1
�v� + �V1
1��v� = 0, . . . , V8�v� = V8

0�v�

+ 
V8
1
�v� + �V8

1��v� = 0

here

V1
0 = v�1� V2

0 = − v��1� V3
0 = v�ā −� − v�ā +�

V4
0 = − v��ā −� + v��ā +� �53�

V5
0 = ��̄2 − �̄��v�ā −� − v�ā +�� + v��ā −� − v��ā +� �54�

V6
0 = − ��̄2 − �̄��v��ā −� − v��ā +�� − �v��ā −� − v��ā +��

+ 2�̄��v�a−� − v�a+�� �55�

V7
0 = − v�0� V8

0 = v��0� �56�

nd Vi
1
,� are skipped since for our analysis, only the adjoint to the

nperturbed problem is required. The supplementary expressions
ead

V9
0 = ��̄2 − �̄�v�1� + v��1� �57�

V10
0 = − ��̄2 − �̄�v��1� − v��1� + 2�̄�v�1� V11

0 = v�ā +� �58�

V12
0 = − v��ā +� V13

0 = ��̄2 − �̄�v�ā +� + v��ā +� �59�

V14
0 = − ��̄2 − �̄�v��ā +� − v��ā +� + 2�̄�v�a+� �60�

V15
0 = − ��̄2 − �̄�v�0� − v��0�

V16
0 = ��̄2 − �̄�v��0� + v��0� + 2�̄�v�0� �61�

3.1 Spectrum of the Unperturbed Problem. The unper-
urbed problem 
=�=0 is similar to the problem studied by Wick-
rt and Mote in �2�. It can be written as an operator polynomial

L�u� = �2M�u� + �G�u� + K�u� = �2u + 2�̄�u� + ��̄2 − �̄�u� + uIV
= 0 �62�
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M = 1 G = 2�̄
�

� x̄
K = ��̄2 − �̄�

�2

� x̄2 +
�4

� x̄4 �63�

with boundary conditions

u�0� = u�1� = 0 u��0� = u��1� = 0 �64�

We now use the function u for the unperturbed problem, which is
not to be confused with the axial displacement appearing in the
rod equations. Note that we consider clamped boundary condi-
tions in contrast to the simply supported boundary conditions
studied in �2,6,7�.

Because of the boundary conditions �64� the operators M and K
are symmetric and the quantities �M�u� ,u� and

�K�u�,u� =�
0

1

���̄2 − �̄�u� + uIV�ūdx̄

=�
0

1

�− ��̄2 − �̄�u�ū� + u�ū��dx̄ �65�

are real, where ū is the complex conjugate of u. The operator G�u�
is skew symmetric i.e., �G�u� ,u�=−�u ,G�u�� is a purely imagi-
nary quantity.

The eigenvalues of the unperturbed boundary value problem are
found setting u�x̄�=e�x̄, which yields four different solutions �i

depending on �. Hence the eigenfunctions of the unperturbed
problem are given by

u�x̄� = A1e�1x̄ + A2e�2x̄ + A3e�3x̄ + A4e�4x̄ �66�

where the Ai are constants. To determine the Ai, we substitute u�x̄�
into the four boundary conditions, which yields a linear homoge-
neous system of equations U���A=0. For nontrivial solutions, the
determinant of the coefficient matrix has to vanish. The values �
thus obtained are the eigenvalues of the problem �see �26�, �27��.
Having calculated the eigenvalues, the eigenfunctions u�x̄� can be
calculated. Eigenfunctions corresponding to different eigenvalues
are linearly independent. If an eigenvalue of multiplicity m occurs
and there are p�m linearly independent eigenfunctions, then to
every eigenfunction uk�x̄�, k=1, . . . , p corresponds a Jordan
�Keldysh� chain uk→u1

k , . . . ,umk

k of linearly independent associ-

ated functions u1
k�x̄� , . . . ,umk

k �x̄� defined by

L�uk� = 0 �67�

L�u1
k� +

1

1!

�L

��
�uk� = 0 �68�

. . . �69�

L�umk

k � +
1

1!

�L

��
�umk−1

k � + ¯ +
1

mk!

�mkL

��mk
�uk� = 0 �70�

with m1+ ¯ +mp=m− p �27�.
Taking the scalar product of L�u� with an eigenfunction of the

adjoint problem, which is easily seen to be v=u, for purely imagi-
nary eigenvalues � we obtain

�L�u�,u� = �2�M�u�,u� + ��G�u�,u� + �K�u�,u� = 0 �71�

from which we get �see e.g., �15��

� =
− �G�u�,u� � 
�

2�M�u�,u�
�72�

� = �G�u�,u�2 − 4�K�u�,u��M�u�,u� �73�

Note that only one of the � in �72� is an eigenvalue of the system.
It can, however, still be seen from �72� that on the divergence

boundary �K�u� ,u�=0 holds, and that on the flutter boundary we
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ave �=0. Note that for �=0, it follows from �72� that

2�M�u�,u�� + �G�u�,u� = 0 �74�
hich is, in fact, the necessary and sufficient condition for exis-

ence of the associated function u1 following from �68�, and its
nalog is known in aero-elasticity problems �28� as flutter condi-
ion. This reflects the fact �see e.g., �29�� also clear from the
erturbation formulas derived in Secs. 3.2.1 and 3.2.2 that generi-
ally on the stability boundary of a gyroscopic system, we always
nd a double eigenvalue with a Jordan chain �30�.
We can also observe the fact known for discrete systems �see

.g., �15�� that the gyroscopic system has to pass the divergence
oundary before it can experience flutter, since from �72� it is seen
hat flutter can only occur with a negative definite stiffness
perator.

Since the characteristic equation is highly nonlinear, we prefer
o use the discretization approach of the previous section to cal-
ulate the eigenvalues of the problem. With �=
=0, we obtain
he eigenvalue curves shown in Fig. 5, which qualitatively agree
ith the curves obtained in �2�.
In the special case that �̄=0, we can calculate the critical

peeds analytically by substituting �̄=0 in �62� and using �66�.
or nontrivial solutions, we obtain the condition

0 = sin
�̄

2
�sin

�̄

2
−

�̄

2
cos

�̄

2

 �75�

hich is satisfied for �̄=2�n and �̄ /2=tan �̄ /2. At the first critical
peed �̄=2�, we have a double zero eigenvalue with a Jordan
hain. For �̄=0, we can also analytically obtain the corresponding
igenfunction

u�x̄� = C1�1 − cos�2�x̄�� �76�
nd the associated function

u1�x̄� = C2�1 +
C1

2�
− cos��x̄� −

5

2�2 sin��x̄�
 �77�

here C1 and C2 are undetermined constants. For �̄�0, we pro-
eed similarly; the equations are lengthier and are not stated here.

3.2 Perturbation Analysis of the Nonconservative
roblem. To analyze the stability of the gyroscopic system with
issipative and nonconservative positional forces, we use the ap-
roach of �23–25� based on the perturbation theory of Vishik and
yusternik �31�. We will study the stability domains for the sys-

em �43�, �44� depending on the parameters �̄, �, and 
. We per-
urb the system around a fixed speed i.e., �̄= �̃+� and assume that

ρ̄

m(λ)

e(λ)

4 6 8 10 12 14

0

50

100

150

200

0

5

10

15

20

25

s d s f s d+f

ρ̄ : non-dimensional velocity

s: stability

d: divergence

f: flutter

Fig. 5 Eigenvalue curves for �̄=3�
he small parameters �, �, and 
 are smooth functions of the
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parameter �. This corresponds to a variation along a smooth curve
parameterized by � in the parameter space. It is possible to expand
����, ����, and 
���around �=0, assuming that ��0�=��0�=
�0�
=0, for example,


��� =
d
�0�

d�
� + ¯ = 
1� + ¯ �78�

���� =
d��0�

d�
� + ¯ = �1� + ¯ �79�

���� =
d��0�

d�
� + ¯ = �1� + ¯ �80�

Assuming this kind of perturbation, we write the boundary value
problem perturbed up to first order in � as

L�w� + �L1��w� = 0 �81�

U1�w� = U1
0�w� + �U1

��w� = 0, . . . ,U8�w� = U8
0�w� + �U8

��w� = 0

�82�

where L�w� is defined by �43�:

L1��w� = �1�2�w� + 2�̃w�� �83�

Ui
0�w� are defined by �46�–�48� and

Ui
1� = 
1Ui

1
 + �1Ui
1� �84�

with Ui
1
,� defined in �49� and �50�.

It is known that generically only simple and double eigenvalues
occur in the spectrum of a one-parameter gyroscopic system �30�,
as we can also see from Fig. 5. In the following, we expand the
eigenvalues of the perturbed problem in a series, depending on the
Jordan structure of the eigenvalue of the unperturbed problem.
The leading terms of these expansions are analytical approxima-
tions to the stability boundaries of the system in the parameter
space.

3.2.1 Perturbation of Simple Eigenvalues. According to �31�,
for a simple eigenvalue �0 and the corresponding eigenfunction
u�x̄�, we set

w�x̄� = u�x̄� + �w1
��x̄� + ¯ �85�

� = �0 + ��1
� + ¯ = �0 + ��
1�1


 + �1�1
� + �1�1

�� + ¯ �86�

Taking into account the dependence of L�w� on �, we frequently
use the notation

L�w� = �L�����w� �87�

Substitution into �81� yields

�L��0 + ��1
� + ¯ � + �L1���0 + ��1

� + ¯ ���u + �w1
� + ¯ � = 0

�88�

where we can write

�L��0 + ��1
�� + ¯ ��u� = �L��0���u� + ��1

�� �L

��
��0���u� + ¯

= L�u� + ��1
��L

��
�u� + ¯ �89�

Proceeding similarly with L1�, we arrive at

L�u� + ���1
��L

��
�u� + L�w1

�� + L1��u�� + ¯ = 0 �90�
Similarly, we get
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Ui
0�u� + ���1

��Ui
0

��
�u� + Ui

0�w1
�� + Ui

1��u�� + ¯ = 0 �91�

etting equal to zero the terms of same powers of � and multiply-
ng with the eigenfunction of the unperturbed adjoint problem v,
e obtain

�1
�� �L

��
�u�,v� + �L�w1

��,v� + �L1��u�,v� = 0 �92�

sing �L�w1
�� ,v�= �w1

� ,L*�v��+�i=1
n Ui

0�w1
��Vn+1−i

0 �v�, where n=16
or our particular problem, and

Ui
0�w1

�� = − �1
��Ui

0�u�
��

− Ui
1��u� �93�

e obtain a formula for �1
�, first derived by Kirillov and Seyranian

n �23–25� for general two-point non-self-adjoint boundary value
roblems smoothly depending on the spectral parameter and a
ector of physical parameters:

�1
� = −

�L1��u�,v� − �i=1

n
Ui

1��u�Vn+1−i
0 �v�

� �L

��
�u�,v� − �i=1

n �Ui
0

��
�u�Vn+1−i

0 �v�

�94�

ubstituting L1�=
1L1
+�1L1� and Ui
1�=
1Ui

1
+�1Ui
1�, using

49�, �50�, and �53�–�61�, and taking into account that the eigen-
unctions and their first derivatives are continuous �i.e., for ex-
mple u�ā+�=u�ā−�=u�ā��, we calculate �1


, �1
�, and �1

�, which for
ur problem, read

�1

 =

− 2k̄u�ā�v̄�ā� + �h̄k̄
u�ā� − h̄N̄0
2u��ā��v̄��ā�

�
0

1

�2�0u + 2�̃u��v̄dx̄

�95�

�1
� =

− 2d̄�0u�ā�v̄�ā� + h̄d̄�0
u�ā�v̄��ā�

�
0

1

�2�0u + 2�̃u��v̄dx̄

�96�

nd

�1
� = −

�
0

1

�2�0u� + 2�̃u��v̄dx̄

�
0

1

�2�0u + 2�̃u��v̄dx̄

�97�

ote that �94� can be regarded as the extension of the formulas
erived in �23–25� to the important case of problems containing
ntermediate boundary conditions.

3.2.2 Perturbation of Double Eigenvalues. Following �31� for
ouble eigenvalues, we set

w�x̄� = u�x̄� + �
1
2 w1

��x̄� + ¯ �98�

� = �0 + �
1
2 �1

� + ¯ �99�

xpanding all the terms in powers of �
1
2 and ordering yields

�0: L�u� = 0 �100�

�
1
2 : �1

��L
�u� + L�w1

�� = 0 �101�

��
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�: ��1
��21

2

�2L

��2 �u� + �2
��L

��
�u� + �1

��L

��
�w1

�� + L�w2
�� + L1��u� = 0

�102�

and similar expressions hold for the Ui, namely,

�0: Ui
0�u� = 0 �103�

�
1
2 : �1

��Ui
0

��
�u� + Ui

0�w1
�� = 0 �104�

�: ��1
��21

2

�2Ui
0

��2 �u� + �2
��Ui

0

��
�u� + �1

��Ui
0

��
�w1

�� + Ui
0�w2

�� + Ui
1��u�

= 0 �105�

From �101� follows w1
�=�1

�u1+Cu, where C is a constant. Multi-
plying the Jordan chain by v, we get

�v,L�w1
��� + �1

��v,
�L

��
�u�� = �

i=1

n

Ui
0�w1

��Vn+1−i
0 �v� + �1

��v,
�L

��
�u��

= − �1
��

i=1

n
�2Ui

0

��2 �u�Vn+1−i
0 �v�

+ �1
��v,

�L

��
�u�� = 0 �106�

making use of �104�. Multiplication of �102� by v and integration
by parts using �105� yields

�v,L�w2
��� = �

i=1

n

Ui
0�w2

��Vn+1−i
0 �v� = − �

i=1

n ���1
��21

2

�2Ui
0

��2 �u�

+ �2
��Ui

0

��
�u� + �1

��Ui
0

��
�w1� + Ui

1��u��Vn+1−i
0 �v�

= − ��1
��21

2
�v,

�2L

��2 �u�� − �2
�� �L

��
�u�,v�

− �1
�� �L

��
�w1

��,v� − �L1��u�,v�

With w1
�=�1

�u1+Cu and using �106�, this simplifies to the formula

��1
��2 = −

1

�2
��L1��u�,v� − �

i=1

n

Ui
1��u�Vn+1−i

0 �v�� �107�

�2 = �
r=1

2
1

r!�� �rL

��r �u2−r�,v� − �
i=1

n
�rUi

0

��r �u2−r�Vn+1−i
0 ,�v��

�108�

already derived in �23–25�. This is again the extension allowing
for intermediate boundary conditions, which can obviously be
done for Jordan chains of arbitrary length and several intermediate
transition conditions. Using �49�, �50�, and �53�–�61� for our prob-

lem, it reads
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��1
��2 = 
1

− 2k̄u�ā�v̄�ā� + �h̄k̄
u�ā� − h̄N̄0
2u��ā��v̄��ā�

�
0

1

�2�0u1 + 2�̃u1��v̄dx̄ +�
0

1

2uv̄dx̄

+ �1
− 2d̄�0u�ā�v̄�ā� + h̄d̄�0
u�ā�v̄��ā�

�
0

1

�2�0u1 + 2�̃u1��v̄dx̄ +�
0

1

2uv̄dx̄

+ �1

−�
0

1

�2�0u� + 2�̃u��v̄dx̄

�
0

1

�2�0u1 + 2�̃u1��v̄dx̄ +�
0

1

2uv̄dx̄

�109�

3.3 Stability Boundaries. In Secs. 3.2.1 and 3.2.2, we de-
ived formulas for the change of simple and double eigenvalues
ccurring in the spectrum of the unperturbed system, caused by
mall perturbations of the parameters. For a fixed velocity �̄, the
tability region of the system in the parameter plane 
 ,� is given
y those areas where all eigenvalues have a negative real part. For
ach simple purely imaginary eigenvalue � j of the unperturbed
roblem, there is a stable region, which in the first approximation,
s a half-plane


 Re��1
j
� + � Re��1

j�� � 0 ∀ j �110�

f, at a certain speed �̄, all eigenvalues are simple, then first ap-
roximation to the stable region is given by the intersection of the
alf-planes �see also �17�, �23–25,32��. Depending on the param-
ters, the intersection can be a sector limited by an angle, a line
for Re��1

1�� /Re��1
1
�= ¯ =Re��1

n�� /Re��1
n
�� or a point.

The necessary and sufficient conditions for a double purely
maginary eigenvalue �0 not to move to the right-hand side of the
omplex plane in the first approximation, i.e.,

Re�
Re���1
��2� + i Im���1

��2�� � 0 �111�

re Im���1
��2�=0 and Re���1

��2�	0. The condition Im���1
��2�=0

efines the line


 =
Im�2d̄�0u�ā�v̄�ā� − h̄d̄�0
u�ā�v̄��ā��

Im�2k̄u�ā�v̄�ā� − �h̄k̄
u�ā� − h̄N̄0
2u��ā��v̄��ā��
�

�112�

nly half of which can be in the stable region. We are now in the
osition to draw pictures of the onset of the stability regions.

In Figs. 6 and 7, we see the onset of the stability boundary
orresponding to the smallest two pairs of complex conjugate ei-
envalues, plotted for the values of parameters


 = 0.3 d̄ = 0.5 k̄ = 1 N̄0 = 0.1 �̄ = 3� h̄ = 0.01 ā = 0.51

�113�

elow the first critical speed �̃1=6.99, we have a simple spectrum
ith purely imaginary eigenvalues. Therefore, we get a region of

symptotic stability, which for small 
 and �, is approximately a
ector limited by an angle.

Therefore, the simultaneous actions of dissipative and noncon-
ervative positional forces can cause both asymptotic stabilization
nd flutter instability. This is very important, since it occurs in the
ubcritical range in squeal problems. However, in the subcritical
ange, in accordance with Fig. 6, it is possible to assign a desta-
ilizing effect to nonconservative forces, as discussed in Sec. 2.4
ased on �1,16,19�, and a stabilizing effect to damping forces �at
east if they cause a positive semidefinite damping operator�. This
s no longer true in the supercritical range, since the stiffness

perator becomes negative definite. Due to the angle singularity
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on the stability boundary, the choice of the stabilizing combina-
tion of the forces is nontrivial, especially in this case in agreement
with �17�.

At the critical speed, we get a double zero eigenvalue with a
Jordan chain, characterizing the divergence boundary of the un-
perturbed system. At the second critical speed �̃2=9.50, the sys-
tem stabilizes again. For the perturbed problem, the stability re-
gion is again given by a sector limited by an angle.

The next interesting point in the spectrum occurs where the first
and second eigenvalues meet with nonvanishing imaginary part
��̃3=10.30�. Here, we have again a double eigenvalue with a Jor-
dan chain. Towards this point, the sector of the stable region
shrinks to a line since the stability boundaries of first and second
eigenvalue coincide at this point, as can be seen from the pertur-
bation formulas derived for the simple and the double eigenvalue
in Secs. 3.2.1 and 3.2.2. What we see around this point in Fig. 7
is, in fact, a generic singularity of the stability boundary of a
three-parameter system ��̄, 
, ��. These singularities have been
investigated by Arnold �30� and the one that we are observing is
the Whitney umbrella caused by a double purely imaginary eigen-
value with a Jordan block. Above the speed corresponding to the
Whitney umbrella, the unperturbed system suffers flutter instabil-
ity. Increasing the speed of the beam, the unperturbed system
stabilizes again at a critical speed �̃4=12.78, corresponding to a
double eigenvalue with a Jordan block, again yielding a Whitney
umbrella. Afterwards, the system again loses stability by diver-
gence, and additionally suffers flutter at a later stage.

The Whitney umbrella also appears in other problems, e.g., on
the stability boundaries of the Beck column with external and
internal damping �see �23,25��. It was also found in general two
degree of freedom linear gyroscopic systems with damping and
circulatory forces considered in �17�, as well as in circulatory
systems with small velocity dependent forces �33�.

We now give an expression for the Whitney umbrella. Suppose
¯

ρ̄

γ
δ

−1

−0.5

0

0.5

1

x 10
−6

−0.01 −0.005 0 0.005 0.01
γ

δ ρ̄ = 5.13

Fig. 6 Stability boundaries „subcritical range…
the beam without pads, i.e., 
=�=0, is moving with the speed �
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�̃ corresponding to the first double purely imaginary eigenvalue

0= �̃0, the corresponding eigenfunction u= ũ, and associated
unction u1= ũ1. Now the velocity is changed slightly by the small
arameter �. Formula �109� yields

��1
��2 = ��1

��2 = − �1
��̃0ũ� + �̃ũ�, ũ�

��̃0ũ1 + �̃ũ1 + ũ, ũ�
�114�

hat is seen to be a real quantity, because �u1 ,L�u1��=
�u1 , ��L /����u�� is real, which follows from the defining equa-

ions of the Jordan chain and integration by parts. Consequently,
n the vicinity of the first flutter boundary �̄= �̃+�= �̃+��1, the

ncrement 
��1
� to the unperturbed double eigenvalue �̃0 is purely

maginary for �	0 and real otherwise. For negative �, the eigen-

alue �̃0 splits into two simple purely imaginary eigenvalues ��̄0.
Perturbation of the system for arbitrary �̄ corresponding to a

imple spectrum of the unperturbed problem with the forces com-

ng from the pads yielded �̄��̄�= �̄0��̄�+
�1

��̄�+��1

���̄� for the
igenvalues meeting at �̃. The coefficients �1


��̄� and �1
���̄� were

iven in �95� and �96�, depending on �̄ through the eigenvalues
nd eigenfunctions of the unperturbed problem ��=
=0�. Substi-

uting �̄0= �̃0�
��1
�+¯ and ū= ũ�
��1

�ũ1 into �95� and �96�
nd postulating that �̄��̄�=0, we obtain an approximate equation
or the critical speed for the flutter boundary for the beam with

ρ̄

γ
δ

−1

−0.5

0

0.5

1

x 10
−6

−0.01 −0.005 0 0.005 0.01
γ

δ ρ̄ = 9.95

Fig. 7 Stability boundaries „supercritical range…
ads of the form
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�̄ = �̃ + � A� + B


C� + D


2

�115�

where A ,B ,C, and D are constants depending only on the spectral
data of the unperturbed problem at �̄= �̃, �=
=0, and correspond-

ing to the double eigenvalue �̃0. Equation �115� is of the canonical
form for the Whitney umbrella; see �17,30�.

4 Conclusion
In this paper we considered a moving beam with clamped

boundary conditions in frictional contact with idealized pads. The
system’s equations of motion were derived, and the interactions
between beam and rod equations were identified. Due to the pads,
self-excited vibrations can arise in the system originating from
instabilities of the trivial solution of the beam equation. The in-
vestigated mechanism not only occurs in beams, but can also be
observed in rotating disks, providing an explanation for the phe-
nomenon of squeal, and probably also in other moving continua,
like shells. The problem was investigated using a perturbation
approach, which enabled us to calculate analytic approximations
to the stability boundaries. It was found that on the stability
boundary of the system, there are generic singularities corre-
sponding to double eigenvalues with a Jordan chain, and analytic
approximations for the splitting of eigenvalues in the vicinity of
these singularities were calculated. The model is an example for a
system losing Hamiltonian symmetry only due to perturbations in
the boundary conditions. Insights gained from the problem carry
over to other problems with moving media, and are to be investi-
gated in future research.
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