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Dissipation-induced subcritical flutter in the acoustics of friction

Oleg N. Kirillov1,∗
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We consider a gyroscopic system under the action of small dissipative and non-conservative positional forces, which has its
origin in the models of rotating elastic bodies of revolution in frictional contact such as the singing wine glass or the squealing
disc/drum brakes. The spectrum of the unperturbed gyroscopic system forms a spectral mesh in the plane ’frequency versus
gyroscopic parameter’ with double semi-simple purely imaginary eigenvalues at the nodes. In the subcritical range of the
gyroscopic parameter the eigenvalues involved into the crossings have the same Krein signature and thus their splitting due to
changes in the stiffness matrix, which break the rotational symmetry of the body, cannot produce complex eigenvalues and,
therefore, flutter. We establish that perturbation of the gyroscopic system by the dissipative forces with the indefinite matrix
can lead to the subcritical flutter instability even if the rotational symmetry is destroyed. With the use of the perturbation
theory of multiple eigenvalues we explicitly find the linear approximation to the domain of the subcritical flutter, which turns
out to have a conical shape. The orientation of the cone in the three dimensional space of the parameters, corresponding to
gyroscopic, damping, and potential forces, is determined by the sign of an explicit expression involving the entries of both the
damping and potential matrices. With the use of a time-dependent coordinate transformation we demonstrate that the conical
zones of flutter for the original autonomous system coincide with the zones of the subcritical parametric resonance of the
rotationally symmetric flexible body with the load moving in the circumferential direction.
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Conical zones of the subcritical flutter instability induced by the indefinite damping

We consider a linear autonomous non-conservative gyroscopic system with dissipation

ẍ + (2ΩG + δD)ẋ + (P + Ω2G2 + κK + νN)x = 0, x ∈ R
2n, (1)

where Ω is the gyroscopic parameter, G = diag(J, 2J, . . . , nJ) = −GT and P = diag(ω2
1I, ω

2
2I, . . . , ω

2
nI) = PT are the

matrices of gyroscopic and potential forces with

I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
, ω2

1 < ω2
2 < · · · < ω2

n−1 < ω2
n, (2)

and the dissipative, conservative, and non-conservative perturbations with the real matrices D = DT , K = KT , and N =
−NT are controlled by the parameters δ, κ, and ν, respectively. The transformation x = Az := exp(−ΩGt)z yields an
equivalent to (1) potential system with the periodic perturbation, see [1]

z̈ + δD̃(t)ż + (P− δΩD̃(t)G + κK̃(t) + νÑ(t))z = 0. (3)

For n = 2 the matrix Ñ(t) := A−1NA = N and the periodic stiffness and damping matrices are

2K̃(t) := 2A−1KA = ItrK + (K + JKJ) cos(2Ωt) + (JK− KJ) sin(2Ωt),

2D̃(t) := 2A−1DA = ItrD + (D + JDJ) cos(2Ωt) + (JD− DJ) sin(2Ωt). (4)

Equation (1) frequently originates after linearization and discretization of continuous models of rotating flexible bodies of
revolution in frictional contact and describes their small oscillations in the stationary frame, whereas (3) describes them in
the rotating frame [2–4]. Due to the rotational symmetry the eigenvalues ω2

s , s = 1, 2, . . . , n, of the matrix P are double
semi-simple. The distribution of the doublets as a function of s is usually different for various bodies of revolution. For
example, ωs = s corresponds to the spectrum of free vibrations of a circular string [5].

Separating time by the substitution x = u exp(λt) into (1), we arrive at the eigenvalue problem, whose eigenvalues for

δ = κ = ν = 0 together with their complex conjugates λ±
s = iωs ± isΩ and λ±

s = −iωs ∓ isΩ form a spectral mesh in the
plane (Ω, Imλ), see Fig. 1(a). The eigenvalues λ±

s correspond to the forward and backward traveling waves propagating in
the circumferential direction of a rotating body of revolution, respectively, [3]. The sth backward traveling wave appears to
be stationary when λ±

s = λ±
s = 0 for the speeds of rotation ±Ωcr

s = ±ωs/s. We refer to the minimal of all Ωcr
s as the critical

speed and denote it Ωcr. Then, the range |Ω| < Ωcr is called subcritical and the range |Ω| > Ωcr is called supercritical for

the system (1). The eigenvalues λ±
s in the supercritical range are associated with the reflected traveling waves [3].
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Fig. 1 n=2: (a) spectral mesh; (b) veering of the eigenvalue branches due to perturbation κK; domains of the subcritical flutter instability
(parametric resonance) in the absence of the non-conservative positional forces (ν = 0) for the idefinite matrix D with trD > 0, detD < 0,
and (c) A > 0, (d) A = 0, (e) A < 0.

Since the eigenvalues at the crossings in the subcritical range have the same Krein signature [6], they veer away under
potential perturbation κK, destroying the rotational symmetry of the body, as shown in Fig. 1(b) for the case of n = 2 degrees
of freedom. When, however, all types of forces are involved in the perturbation, then according to [5, 6] the real parts of the
eigenvalues originated after the splitting of the double eigenvalue iω1 for n = 2 are Reλ = (−trD/4±√|c| + Rec)δ/4 with

Rec =
(

µ1−µ2

4

)2

δ2 −
(

ρ1−ρ2

4ω1

)2

κ2 − Ω2 +
ν2

4ω2
1

, Imc =
Ων

ω1
− δκ

2trKD− trKtrD
8ω1

, (5)

where µ1,2 and ρ1,2 are the eigenvalues of the matrices D and K, respectively. For ν = 0 the condition Reλ < 0 yields the
linear approximation to the domain of asymptotic stability in the space of the parameters δ, Ω, and κ

δtrD > 0, κ2A + Ω2(2ω1trD)2 > − detD(ω1trD)2δ2. (6)

For the damping matrices D > 0 the conditions (6) are always fulfilled, whereas for the indefinite damping matrices
with detD < 0 from (6) follow the expressions for the flutter instability domain, which has a form of the half of a cone for
A := detD(ρ1−ρ2)2+ (k12(d22−d11)−d12(k22−k11))

2
> 0, the dihedral angle for A = 0, and the domain adjacent to a half

of a cone for A < 0, see Fig. 1(c-e). The orientation of the instability domain is determined also by the Krein signature of the
eigenvalues involved into the corresponding crossing, which is substantially different in the subcritical and in the supercritical
regions [6, 7]. In the plane (Ω, κ) for a fixed δ > 0 the instability domain has, respectively, the form of an ellipse, a stripe,
or a region contained between the branches of a hyperbola. The latter case shows that a widely known in the engineering
practice approach to the squeal suppression by reducing the rotational symmetry of the rotor is not efficient in the presence of
indefinite damping, which originates from the brake pads with the negative friction-velocity gradient [3, 4].

Acknowledgements The work has been supported by the research grant DFG HA 1060/43-1. The author expresses his gratitude to
Professor P. Hagedorn, Technische Universität Darmstadt, for valuable discussions.

References

[1] V. V. Kozlov, Gyroscopic stabilization and parametric resonance. J. Appl. Maths. Mechs. 65(5), 715 (2001).
[2] R. Hryniv, P. Lancaster, Stabilization of gyroscopic systems, Z. Angew. Math. Mech. 81(10), 675 (2001).
[3] J. E. Mottershead, Vibration- and friction-induced instabilities in discs. The Shock and Vibration Digest. 30(1), 14 (1998).
[4] H. Ouyang, Parametric vibration induced by moving loads, in: Disc brake squeal: mechanism, analysis, evaluation, and reduc-

tion/prevention. [ed.] F. Chen, C.A. Tan, R.L. Quaglia, (SAE, Warrendale, 2006) pp. 49-78.
[5] O. N. Kirillov, How to Play a Disc Brake: A Dissipation-Induced Squeal. SAE Paper 2008-01-1160, In: Noise and Vibration, 2008,

SP-2158, SAE World Congress and Exhibition, Detroit, MI, USA. (SAE, Warrendale, 2008) pp. 167–180.
[6] O.N. Kirillov, Subcritical flutter in the acoustics of friction. Proc. R. Soc. A 464, (2008). doi: 10.1098/rspa.2008.0021
[7] O.N. Kirillov. Perturbation of multiparameter non-self-adjoint boundary eigenvalue problems for operator matrices. Preprint

arXiv:0803.2248v2 [math-ph] 26 Mar 2008.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.gamm-proceedings.com


