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ABSTRACT

The eigenvalues of an elastic body of revolution, rotating
about its axis of symmetry, form a 'spectral mesh'. The
nodes of the mesh in the plane 'frequency' versus
'gyroscopic parameter' correspond to the double
eigenfrequencies. With the use of the perturbation
theory of multiple eigenvalues, deformation of the
spectral mesh caused by dissipative and non­
conservative perturbations, originating from the frictional
contact, is analytically described. The key role of
indefinite damping and non-conservative positional
forces in the development of the subcritical flutter
instability is clarified. A clear mathematical description is
given for the mechanism of excitation of particular
modes of rotating structures in frictional contact, such as
squealing disc brakes and singing wine glasses.

INTRODUCTION

An axially symmetric shell, like a wine glass, can easily
produce sound when a wet finger is rubbed around its
rim or wall, as it was observed already in 1638 by
Galileo Galilei in his Dialogues Concerning Two New
Sciences [6, 29]. This principle is used in playing the
glass harmonica invented by Benjamin Franklin in 1761,
which he called 'armonica', where, in order to produce
sound, one should touch by a moist finger an edge of a
glass bowl rotating about its axis of symmetry [12, 19,
29,47]. This remarkable phenomenon has been studied
experimentally; see e.g. [35]. However, an adequate
theory for its description seems to be still missing.
Another closely related example of acoustics of friction is
the squealing disc brake [19, 23, 34]. This mechanical
system produces sound due to transverse vibrations of a
rotating annular plate caused by its interaction with the
brake pads. Despite intensive experimental and
theoretical study, the problem of predicting and
controlling the squeal remains an important issue [10,
16, 19, 21, 23, 34, 42, 43, 48, 49]. Significant but still
poorly understood phenomena are squealing and
barring of calender rolls in paper mills causing a noise
and reducing the quality of the paper [30].

The presence of multiple eigenvalues in the spectra of
free vibrations of axially symmetric shells and plates is

well known. Already Rayleigh, studying the acoustics of
bells, recognized that, if the symmetry of a bell were
complete, the nodal meridians of a transverse vibration
mode would have no fixed position but would travel
freely around the bell, as do those in a wine glass driven
by the moistened finger [19]. This is a reflection of the
fact that spectra of free vibrations of a bell, a wine glass,
an annular plate, and other bodies of revolution contain
double purely imaginary semi-simple eigenvalues with
two linearly independent eigenvectors.

Rotation causes the double eigenvalues of an axially
symmetric structure to split [1]. The newborn pair of
simple eigenvalues corresponds to the forward and
backward traveling waves, which propagate along the
circumferential direction [1, 2, 3, 7, 13, 16, 17]. Viewed
from the rotational frame, the frequency of the forward
traveling wave appears to decrease and that of the
backward traveling wave appears to increase, as the
spin increases. Due to this fact, double eigenvalues
originate again at non-zero angular velocities, forming
the nodes of the spectral mesh in the plane
'eigenfrequency' versus 'angular velocity'. The spectral
meshes are characteristic for the rotating circular strings,
rings, discs, and cylindrical and hemispherical shells.
The phenomenon is apparent also in hydrodynamics, in
the problem of stability of a vortex tube [24] and in
magnetohydrodynamics in the problem of instability of
the spherically symmetric MHD a2-dynamo [38].

It is known that striking the wine glass excites a number
of modes, but rubbing the rim with a finger generally
excites a single mode [12]. Similar phenomenon is
observed for the squealing disc brake [19, 23, 34, 39,
40,41]. For this reason, we formulate the main problem
of acoustics of friction of rotating elastic bodies of
revolution as the description of the mechanism of
activating a particular mode of the continuum by its
contact with an external body.

In case of the disc brake, the frictional contact of the
brake pads with the rotating disc introduces dissipative
and non-conservative positional forces into the system
[34, 43, 46, 48]. Since the nodes of the spectral mesh
correspond to the double eigenvalues, they are most
sensitive to perturbations, especially to those breaking



the symmetries of the system. Consequently, the
instability will most likely occur at the angular velocities
close to that of the nodes of the spectral mesh. The
unstable modes of the perturbed system will have the
frequencies close to that of the double eigenvalues at
the nodes. This picture qualitatively agrees with the
existing experimental data [12,19,23,34,39,40.. 41].

In the following using the perturbation theory of multiple
eigenvalues [28, 32, 33, 38] we will show that
independently on the definiteness of the damping matrix,
there exist combinations of dissipative and non­
conservative positional forces, causing the flutter
instability in the vicinity of the nodes of the spectral
mesh for the angular velocities from the subcritical
range. Zero and negative eigenvalues in the spectrum of
the damping matrix encourage the development of the
localized subcritical flutter instability while zero
eigenvalues in the matrix of non-conservative positional
forces suppress it. Explicit expressions describing the
movements of eigenvalues due to change of the system
parameters will be obtained. Conditions will be derived
for the eigenvalues to move to the right part of the
complex plane. Approximations of the domain of
asymptotic stability will be found and singUlarities of the
stability boundary responsible for the development of
instability will be described and classified. The
methodology developed for the study of the two­
dimensional system will finally be employed to the
detailed investigation of the stability of a rotating circular
string constrained by a stationary load system.

THE SPECTRAL MESH OF A GYROSCOPIC
SYSTEM WITH TWO DEGREES OF FREEDOM

Consider an autonomous non-conservative system

where a dot over a symbol denotes time different~tion,

x E R 2
, and I is the identity matrix. The real matrices

D = D T
, G = _GT

, K =K T
, and N = _NT are

related to dissipative (damping), gyroscopic, potential,
and non-conservative positional (cirCUlatory) forces with
magnitudes controlled by scaling factors 8, 0, K, and
v respectively; P > 0 is the frequency of free
vibrations of the potential system, corresponding to
8 = 0 = K =V =O. The parameters and variables of
the system are assumed to be non-dimensional
quantities. Without loss in generality it is accepted that
detG = 1 and detN = 1. Equation (1) frequently
appears as a two-mode approximation of the models of
rotating elastic bodies of revolution in frictional contact
after their linearization and discretization [16, 23, 46].

Separating time by setting x(t) = uexp(At) we arrive

at the eigenvalue problem Lu =0 , where

Figure 1.

The spectral mesh of system (1) when 8 = K =V =O.

(2) L=U2+(20G+bD)A+(P2 -02)I+Jd(+vN

Applying the Leverrier-Barnett algorithm [9] to the
operator L we find the characteristic polynomial

P(/L) = ,t + OfrD/L3

(3) + (2(fJ2 +02
) + b 2 detD+ KTrK)/L2

+ (40 v +b(fJ2 - 0 2 )TrD +bK(TrKTrD - TrKD))/L

+ K2 detK + KTrK(fJ2 _02
) +(fJ2 _02

)2 +v2,

where Tr stands for the trace of a matrix. In the absence
of dissipative, external potential, and non-conservative
positional forces the polynomial (3), corresponding to the
operatorLo(O) =U 2 + 2/LQG+ (p2 _02 )1, has four

purely imaginary roots [18]

(4) ~± - 'p + 'n ~± - _.p + 'n
/l,p - l _ll.l., /l,n - l _ll.l.

In the plane (O,ImA) equations (4) describe straight
lines intersecting with each other (Fig. 1) - the spectral
mesh [38]. Two nodes of the mesh at 0 =0 correspond
to the double semi-simple eigenvalues A =±ifJ . At the

other two nodes at 0 =±Od there exist double semi­

simple eigenvalues A = O. The range I0 1< 0d = fJ is

called subcritical for the gyroscopic parameter 0 [18].
The double semi-simple eigenvalue ifJ at 0 =0 0 =0

has two linearly-independent eigenvectors u 1 and u 2

(5) u 1 = ~(OJ, u? = ~(lJ.
-..;2fJ 1 - -..;2fJ 0

The eigenvectors are orthogonal u~u j = 0, i =f::. j , and

satisfy the normalization condition u~u i =(2fJfl .



Under variation of the gyroscopic parameter

o =0 0 +~O, the double eigenvalue ifJ into two

simple ones bifurcates. The asymptotic formula for the
perturbed eigenvalues is [32]

(12) Jl2 - JlTrD+ detD = 0, p 2 - pTrK+ detK = O.

Separation of real and imaginary parts in (10) yie,lds

(6) IL~ = ij3 + i/1Q/l1 + 122 + i/1
2

JlI + Jl2 5:± Rec + ~(Rec)2 + (ImC)2
(13) Re1 = u

4 2

where the quantities fij are

T aLo(O) I . T(7) +'.. = u. u. = 2zfJu .Gu,..
Ji] } ao I }

Q=O,A=ijJ

The skew symmetry of G yields fll = f 22 =0 ,

fr2 = - f21 = i , so that (6) gives the exact result (4).

DEFORMATION OF THE SPECTRAL MESH

Consider a perturbation of the gyroscopic system

L o(0) +~(O) , assuming that the size of the

perturbation ~(O) = 51 D + K K +v N ~ 8 is small,

where 8 = II~(O)II. The behavior of the perturbed

double eigenvalue ifJ for small 0 and 8 is described
by the asymptotic formula [32]

A =ijJ+iQ III +122 +iqIl + q22
(8) 2 2

±i (Q(J;I - I??~+qll -q22)2 + (QJ;2 +qlz)(Q.h1 +qzl)

where fij are given by (7) and

/

(9) qij =u~~(O)Ui =ifJ5u~Dui +KU~Kui +VU~NUi

are small complex numbers of order 8 . With the vectors
(5) we obtain

(11) c =(~ /')',,' -(P'4"!i'JK'

(

.n V)2 .s: 2TrKD - TrKTrD+ z~~+- -ZuK-------
213 813'

where JlI' Jl2 and PI' P2 are eigenvalues of D and

K, respectively, and thus satisfy the equations

. ~ 13 PI + P2 ~ - Rec +~(Rec)Z + (lmC)2
hn/L = + K± ,

413 2

where

(14) hnc= Qv _bK2TrKD-TrKTrD
13 813

Rec =(JlI ~Jl2J52 _(PI4~2J K2_02 + :;2.
The formulas (10) - (14) describe splitting of the double
eigenvalues at the nodes of the spectral mesh due to
variation of parameters, including those corresponding
to dissipative and non-conservative positional forces.
This leads to the deformation of the mesh, in particular,
to the veering and merging of eigenvalue branches.

Although the veering phenomenon in the systems with
gyroscopic coupling was studied both numerically and
analytically, e.g in [3, 4, 7, 8, 13, 17, 31], the explicit
expressions (10) - (14) for the splitting of the double
eigenvalues due to action of forces of all types were not
previously derived. The approach used in our paper is
distinct of that of the cited works. It is based on the
perturbation theory of multiple eigenvalues [28, 32, 33].
The spectrum of the perturbed system is described by
means of only the derivatives of the operator with
respect to parameters and the eigenvectors of the
multiple eigenvalue calculated directly at a node of the
spectral mesh.

THE EFFECT OF POTENTIAL FORCES

We first study the influence of a conservative
perturbation with the matrix K on the spectral mesh of
the gyroscopic system. SUbstituting 5 =v = 0 into the
formulas (13) and (14) and transforming them yields

(15) ( hnA~ jJ j'4~'J-0' =(P'4-;'J K',

ReA = O.



Figure 2.

Conservative deformation of the spectral mesh (K > 0): K > 0 (a); K is positive semi-definite (b); K is indefinite (c).

When K:I: 0, equation (15) describes a hyperbola in the
plane Im /L versus n with the asymptotes

CREATION AND ACTIVATION OF THE LATENT
SOURCES OF INSTABILITY BY DISSIPATION

The asymptotes cross each other above the node
(0,13) of the non-deformed spectral mesh for

TrK > 0, exactly at the node for PI = -P2' and below

the node for TrK < O. The branches of the hyperbola
intersect the axis n = 0 at the points

Consider the effect of dissipative forces on the stability
of the gyroscopic system and study its dependence on
the properties of the matrix D. Assuming v = K =0
in expression (11) we rewrite formula (10) in the form

Since Imc = 0, equations (13) are transformed into

Re/L=

(
Re/L + PI + P2 5J2 +n 2 = (PI - P2)2 52

4 16'

Im/L = /3

n 2_ (Im/L _ /3)2 = (PI ~:2)2 52,

(21)

when

(19)

and into

for the opposite sign in inequality (20) . For a given 5
equation (21) defines a hyperbola in the plane
(n,Im/L), while (19) is the equation of a circle in the

plane (n,Re/L), as shown in Fig. 3(a,c). For tracking

the complex eigenvalues due to change of n, it is
convenient to consider the eigenvalue branches in the
three-dimensional space (n, Im/L, Re /L) .

If the eigenvalues PI,2 have the same sign, the

intersection points are always located above or below
the node of the spectral mesh for K > 0 or K < 0 ,
respectively, see Fig. 2(a). In case when one of the

eigenvalues PI ,2 is zero, implying semi-definiteness of

the matrix K, one of the branches of the hyperbola
goes through the node of the spectral mesh and the
other crosses the axis n =0 abov~the node, if K is
positive semi-definite, or below it, if K is negative semi­
definite, Fig. 2(b). If K is indefinite, one of the

intersection points /31,2 is located above the node and

another one below the node, as indicated in Fig. 2(c).

Therefore, the conservative deformation of the spectral
mesh does not shift the eigenvalues from the imaginary
axis, preserving the marginal stability. However, the
deformation pattern depends on the definiteness of the
perturbation matrix K. In particular, in the degenerate
case when det K =0 , one of the eigenvalue branches,
originated after the splitting of the double eigenvalue,
always passes through the point corresponding to the
node of the unperturbed spectral mesh, Fig. 2(b).
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Figure 3. Origination of a latent source of the subcritical flutter instability in presence of full dissipation.

In this space the circle belongs to the plane ImA = fJ
and the hyperbola lies in the plane

ReA = -8(;.11 + Jl2)/ 4, see Fig. 4(a,c).

Below we show that the circle of the complex
eigenvalues - the bubble of instability [20] - plays the
crucial role in the development and localization of the
subcritical flutter instability. Its properties depend on
whether the matrix D is definite or indefinite.

Full dissipation and pervasive damping: A latent state of
the bubble of instabilitv

Formulas (19) and (21) show that the radius of the
bubble of instability rb and the distance db of its center

from the plane Re A = 0 are defined by the eigenvalues

JlI and Jl2 of the matrix D

and to plunge all the eigenvalue curves into the region
Re A ~ O. The eigenvalues at the points (24) are double
and have a Jordan chain of generalized eigenvectors of
order 2. In the complex plane the eigenvalues of the
perturbed system move with the variation of 0 along
the lines ReA = -db until they meet at the points (24)

and then split in the orthogonal direction; however, they
never cross the imaginary axis, see Fig. 3(b).

The bubble of instability has two remarkable properties
important for the explanation of the phenomenon of
squeal. First, there exist perturbations causing its growth
and emersion above the surface Re A =0 (flutter);
second, for small 8 the instability is localized in the
vicinity of the frequency ImA = fJ and of the value of

the gyroscopic parameter 0 =O. The bubble is a latent
source of subcritical flutter instability localized in a
narrow range of change of the gyroscopic parameter

with 101< 0d at the frequency corresponding to the

double eigenvalue of the non-rotating system.

Consequently, the bubble of instability is "submerged"

where the latter is equivalent to the inequality d b ~ rb •

The inequalities (23) imply positive semi-definiteness of
the matrix bD. Hence, the role of full dissipation or
pervasive damping is to deform the spectral mesh in
such a way that the double eigenvalue is inflated to the
bubble of complex eigenvalues (19) connected with the
two branches of the hyperbola (21) at the points

under the surface Re A = 0 in the
(0, ImA, Re A). It does not intersect the

Re A = 0 under the conditions

(23) 8(JlI + Jl2) = 8trD > 0, JlIJl2 = detD ~ 0,

space

plaJ(e

Indefinite damping: An active state of the bubble of
instabilitv

As it is seen from equations (22), the radius of the
bubble of instability is greater then the depth of its
submersion under the surface Re A = 0 only if the

eigenvalues JlI and Jl2 of the damping matrix have
different signs, i.e. if the damping is indefinite. The
damping with the indefinite matrix is a destabilizing
factor [15, 44, 45]. It appears in the systems with
frictional contact when the friction coefficient is
decreasing with relative sliding velocity [14, 21, 23]. In
our case it leads to the emersion of the bubble of
instability so that the eigenvalues of the bubble have

positive real parts in the range 0 2 < O~r' where the

critical value is found from the equation (19)

(25) Ocr = 8 .J-detD.
2



Figure 4. The mechanism of subcritical flutter instability
(unstable eigenvalue branches are marked bold).

The right side of the formula (25) is real only for
det D < 0, Le. for the indefinite matrix D. We see that
in the plane of the parameters 5 and Q the domain of
asymptotic stability is defined by the constraints
~ ? 2

U TrD > 0 and Q- > Qcr' For det D < 0 an unstable

system with indefinite damping. can be stabilized by
sufficiently strong gyroscopic forces, as shown in Fig.
5(a) by the dashed line. With the increase in detD the
stability domain is getting wider and for det D > 0 it is
defined by the condition 5TrD > 0, Fig. 5(c). At

det D = 0 the line Q = 0 does not belong to the
domain of asymptotic stability, Fig. 5(b). Therefore,
changing the damping matrix bD from positive definite
to indefinite one, we trigger the state of the bubble of
instability from latent Re /L < 0 to active Re /L > 0 , see

Fig. 4(a,c). Since for small 5 we have Q cr < Qd' the

flutter instability is localized in the vicinity of Q = 0 .

We show now that in combination with the dissipative
forces, both definite and indefinite, the non-conservative
forces can create subcritical flutter instability in the
vicinity of the nodes of the spectral mesh. Multiplying
equations (13), where we assume lC = 0, we find that
the trajectories of the eigenvalues in the complex plane
are described by the formula

The eigenvalues of the branches ifJ + iQ and

- ifJ - iQ get positive real parts due toperturbation.
The eigenvalues of the other two branches are .shifted to
the left from the imaginary axis, see Fig. 4(b). Thus, the
instability induced by the non-conservative forces only is
not localized near the nodes of the spectral mesh, in
contrast to the effect of indefinite damping.

(
TrD ) Qv(27) Re/L+-5 (OO/L-fJ)=-.

4 213

When v = 0 and 5 #- 0 is given, the eigenvalues move
with the variation of Q along the lines Re /L = - TrD / 4
and OO/L =13 and merge at the points (24), see Fig.

3(b). Non-conservative positional forces with 1! #- 0
destroy the merging of modes. As a consequence, the
eigenvalues move along the separated trajectories. The
eigenvalues with IOO/L I increasing due to an increase

in IQ I are closer to the imaginary axis then the others,
as shown in Fig. 6(b). Therefore, in the space
(Q, OO/L, Re/L) the action of the non-conservative

positional forces separates the bubble of instability and
the adjacent hyperbolic eigenvalue branches into two
non-intersecting curves, see Fig. 4(d).

The form of each of the new eigenvalue curves carries
the memory about the original bubble of instability. As a
consequence, the real parts of the eigenvalues are
positive for the values of the gyroscopic parameter

localized near Q = 0 in the range Q2 < Q~r' Taking

into account that Re /L = 0 at the critical values of the

gyroscopic parameter we find Q cr from (13)
\

ACTIVATION OF THE BUBBLE OF INSTABILITY BY
NON-CONSERVATIVE POSITIONAL FORCES

(28) Q =5 TrD
cr 4

y2 -52132 detD

y2 _ 52132 (TrD /2)2 .

In the absence of dissipation non-conservative positional
forces destroy the marginal stability of gyroscopic
systems [5]. One can easily check that this property is
valid for system (1) by assuming 5 = lC = 0 in the
formulas (10) and (11), which yield

Additionally, it follows from (13) that the
eigenfrequi:mcies of the unstable modes from the

interval Q2 < Q~r are localized near the frequency of

the double semi-simple eigenvalue at the node of the

undeformed spectral mesh: co;,. < co < co;, where

(26) 1± - '13 + 'n + V/l.p-l _ll>l._-,

213
1± =-'13+n-~/l.n 1 _ ll> l. + .

213
(2) ± - 13+ Y9 coer - - 213

y2 -52132 detD

y2 _ 5 2132 (TrD / 2)2 .
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Figure 5.
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Approximation to the domain of asymptotic stability (white) and its boundary (bold lines) for the dissipatively perturbed gyroscopic

system (1) when: TrD > 0 and detD < 0 (a); detD = 0 (b); detD > 0 (c).
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Figure 6. Subcritical flutter instability due to combined action of dissipative and non-conservative positional forces.

When the radicand in formulas (28) and (29) is real, the
eigenvalues move in the complex plane making an
excursion to its right side, as shown in Fig. 6(b). As it
follows from (28), in presence of non-conservative
positional forces such excursions behind the stability
boundary are possible for the eigenvalues, even when
dissipation is full: det D > O. One can say that similarly
to the indefinite damping the non-conservative positional
forces activate the latent sources of flutter instability
created by the full dissipation.

The equation (28) describes the surface in the space of
the parameters 5, v, and 0, which is an
approximation to the stability boundary separating the
domains of asymptotic stability and flutter. For better
understanding its shape we rewrite (28) in the form

52 detD +402

(30) v =±5pTrD 52(TrD)2 +1602 .

If det D ~ 0 and 0 is fixed, (30) is an equation of two
independent curves in the plane (5,v). The curves
intersect with each other at the origin along the straight
lines given by the expression v = ±,BTrD5/2 .

However, in case when damping is indefinite and
det D < 0 , the radical in the formula (30) is real only for

52 < -402/ det D . Then, (30) describes two branches
of a closed loop in the plane of the parameters 5 and
v. The loop is smooth at every point except at the
origin, where it is self-intersecting with the tangents
given by the expression v = ±pTrD5/ 2. Therefore,

for a given 0 this curve looks like figure "8". When 0
goes to ze,\o, the size of the self-intersecting curve tends
to zero too. We conclude that in case det D < 0 the
shape of the surface given by equation (28) or (30) is a
cone with the "8"-shaped loop in a cross-section, see
Fig. 7(a). Due to self-intersections the cone consists of
four pockets. The asymptotic stability domain is inside
the two of them, selected by the first inequality (23), as
shown in Fig: 7(a). The singularity of the stability domain
at the origin is the degeneration of a more general
configuration described first in [45]. The domain of
asymptotic stability bifurcates when det D changes
from negative to positive values. This process is shown
in Fig. 7. According to (38) with increasing detD < 0
two pockets of the domain of asymptotic stability move
towards each other until they have a common tangent
line v =0 at detD = 0, see Fig. 7(b).



a)
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Figure 7.

Domains of asymptotic stability in the space (5, v, 0) for different types of damping: Indefinite damping det D < 0 (a); semi-definite

(pervasive) damping detD = 0 (b); full dissipation detD > 0 (c).

When det D > 0 this temporarily glued configuration
unfolds to the unique domain of asymptotic stability
bounded by the two surfaces intersecting along the 0­
axis, see Fig. 7(c).

In Fig. 7(a) we see that in case of indefinite damping
there always exists an instability gap due to the
singularity at the origin. Starting in the flutter domain at
o = 0 for any combination of the parameters 5 and v
one can reach the domain of asymptotic stability at
higher values of I0 I (gyroscopic stabilization), as
shown in Fig. 7(a) by the dashed line. The gap is
responsible for the subcritical flutter instability localized
in the vicinity of the node of the spectral mesh of the
unperturbed gyroscopic system. When det D = 0, the
gap vanishes in the direction v = O. In case of full
dissipation (det D > 0) the singularity at the origin
unfolds. However, the memory about it is preserved in
the two instability gaps located in the folds of the stability
boundary with the locally strong curvature, Fig. 7(c). We
see that in case of full dissipation for some combinations
of the parameters 5 and v the system is asymptotically
stable at any O. There exist, however, the values of 5
and v for which one can penetrate the fold of the
stability boundary with the change of 0, as shown in
Fig. 7(c) by the dashed line. For such 5 and v the
flutter instability is localized in the vicinity of 0 = O. It is
remarkable that in presence of non-conservative
positional forces the system with full dissipation can
suffer from the subcritical flutter localized near the nodes
of the spectral mesh. A good illustration of this fact is the
formula for the maximal real part of the unstable
eigenvalue attained at Q =0 (see Fig. 6(a»

(31) (Re/L)max = fll + fl2 £5 +
4

From our previous considerations it follows that the
phenomenon of the local subcritical flutter instability is
controlled by the eigenvalues of the matrix D. When
both of them are positive, the folds of the stability
boundary are more pronounced if one of the eigenvalues
is close to zero. If one of the eigenvalues is negative and
the other is positive, the local subcritical flutter instability

I,
is possible for any combination of 5 and v including
the case when the non-conservative positional forces
are absent (v =0).

Even if the structure of the damping matrix D is
unknown, we realize that the main role of dissipation of
any kind is the creation of the bubble of instability. The
bubble is submerged below the surface Re /L =0 in the
space (0, Im/L, Re /L) in case of full dissipation and

partially lies in the domain Re /L > 0 when damping is
indefinite. Non-conservative positional forces split the
bubble of instability into two branches and shift one of
them to the region of positive real parts even in case.of
full dissipation. Since the branch remembers the
existence of the bubble, the instability is developing
locally near the nodes of the spectral mesh.

. Therefore, the instability mechanism behind the squeal
is the emersion (or activation) due to indefinite damping
and non-ccmservative positional forces of the bubbles of
instability created by the full dissipation in the vicinity of
the nodes of the spectral mesh.

EXAMPLE. A ROTATING CIRCULAR STRING
CONSTRAINED BY A STATIONARY LOAD SYSTEM

Consider a rotating circular string of displacement
W(rp, r), constrained at rp = 0 by a spring, a damper,
and a massless eyelet [13]. The eyelet generates a
constant frictional follower force F [13, 16] on the
string, as shown in Fig. 8. The parameters rand pare
the radius and mass per unit length of the string.
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Figure 8.
A rotating circular string and its 'keyboard' constituted by the nodes of the spectral mesh (only 30 modes are shown).

The following assumptions are adopted in developing
the governing equation of the problem: the
circumferential tension P in the string is constant; the
stiffness of the spring supporting the string is K and the
damping coefficient of the viscous damper is D; the
velocity of the string in the tp direction has constant
value yr, where the rotational speed of the string is y
[13]. Introducing non-dimensional variables and
parameters

T~
(32) t =-; p'

k=Kr
p'

w=~, o=pH,

F D
Jl= p' d= -JpP'

u(O) - u(2Jr) =0,

(36) Ad +k
u'(O) -u'(2Jr) = Z u(O) + Jl? u'(O),

1-0 1-0-

where prime denotes partial differentiation with respect
to tp. The non-self-adjoint boundary eigenvalue problem

depends on four parameters 0, d, k, and ( Jl,
expressing the speed of rotation, and damping, stiffness,
and friction coefficients of the eyelet, respectively.

Taking the scalar product (Lu, v) = f: K

vLudtp, where

the bar over a symbol denotes complex conjugate, then
integrating it by parts and employing the boundary
conditions (36) we arrive at the boundary value problem
adjoint to (35) and (36)

we arrive at the non-dimensional governing equation
and boundary conditions [13]: (37) L*v =XZv- 20Xv' - (1-0z)v" =0,

w(O,t) - w(2Jr,t) =0,

(34) (1-0z)[wqJ(2Jr,t) - WqJ(O,t)]

+ kw(O,t) + dwtC0,t) + JlW<p(O,t) = 0.

The boundary conditions (34) reflect the continuity of the
string displacement and the discontinuity of its slope.
They follow from the force balance at the eyelet in the
assumption of smallness of the norm of wand w(tp)
with respect to r. The inclusion in Fig. 8 shows the
mutual configuration of the vectors of the frictional
follower force F and of the circumferential tension P .

Separation of time w(tp, t) =u(tp, t)exp(A, t) yields the
boundary eigenvalue problem

(35) Lu =AZ+ 20Au' - (1- OZ )u" =0,

v(O) -v(2Jr) =-~v(2Jr),
1-0-

(38) _

v'(O) -v'(2Jr) == Ad + ~ v(2Jr) + 20~? v(2Jr).
1-0- (l-o-t

./

Let us first consider the string without constraints
(d =k =Jl =0). Then, the system is gyroscopic so
that the eigenfunctions of the adjoint boundary value
problems corresponding to a purely imaginary
eigenvalue A coincide, i.e. v == u. Assuming the
solution of the equation (35) in the form
u = C1 exp(tpA/(1-0)) + Cz exp(-tpA/(1 + 0)) and
substituting it into the boundary conditions (36) we
obtain the characteristic equation

-ZKA.Q

8
~. JrA . JrA e 0

2
-1

(39) /t, sm sm =°
i(1-0) i(I+0) OZ-1



The coefficients In: are defined by

(
r&& rOO J="" J=OO )2± Jnn - Jmm +~nn -~mm (r&O J=1i&)fr'&O J=1i&)

4 - Jnm +~mn Vnm +~mn •

The roots of the equation (39) are

(40) }.,~ = in(1 ± 0),

where n is an integ~r. They are the eigenvalues of the
problem (35), (36) with the eigenfunctions

(41) u: = cos(ntp) +isin(ntp),

(45)

r"" rOO
A = A&O _ J nn + J mOl

nm 2

J=&& J=OO
':1nn + ':7mm

2

respectively. The eigenvalues are purely imaginary and
form a mesh of lines intersecting with each other in the
plane 1m}" versus 0, as shown in Fig. 8. Two

eigenvalue branches }.,~ = in(1 + cO) and

}.,~ = im(1 + 50) , where s, 5 =± , intersect each other

at 0 =O:~

s n-m
(42) O~~ = ---­

m5-ns

and originate the double eigenvalue

(43) }.,"o = inm(5 -s)
rnn m5 -ns '

which has two linearly independent eigenfunctions

u: = cos(ntp) - sisin(ntp),
(44) u: = cos(mtp)-5isin(mtp).

The nodes (42), (43) of the spectral mesh of the rotating
circular string in the absence of the external loading are
marked by white dots in Fig. 8. At 0 = 0 the spectrum
of the non-rotating string consists of the double semi­
simple purely imaginary eigenvalues in, n E Z . Each of
them splits into two simple purely imaginary eigenvalues
due to change in the angular velocity [7, 8, 13, 17]. At
0= ±1 all the eigenvalue branches cross the axis
1m}" = 0, see Fig. 8. In the following we will consider
the spectrum for the angular velocities from the
subcritical range 0 E (-1,1) .

Proceeding analogously to our investigation of a two­
dimensional system we study the splitting of the double
eigenvalues at the nodes of the spectral mesh caused
by the interaction of the rotating string with the external
loading system. For this purpose we use the
perturbation theory of multiple eigenvalues of non-self­
adjoint differential operators developed in [28, 33, 38].
According to this theory the perturbed eigenvalues are
expressed by the following asymptotic formula

while the quantities ;:~ are

(47) ;:~ =_l_((d}"~~ +k)u:(O)u~ (0) + f-lU~E (O)u~ (0)),
2N

where ~O =0 - O~~. Calculating the integrals and

taking into account expressions (43) and (44), we o,btain

(
.m-8m An .m-n

Cd
'1&O 7) S-D J2

C = l ti~.!: +l-- /l.nrn + Ie +--JL
(49) 2 8Jl11Zn . 8n-

CdA~~ +k-imJL)CdA~~ +k-i8mJL)

16n-2nm

According to the experimental data the frequency of
sound emitted by a singing wine glass and a squealing
laboratory brake at low spins is close to a double
eigenfrequency of the non-rotating bodies [19, 23, 34,
39, 40, 41]. For this reason we study first the influence of
external stiffness, -'damping, and friction on the
deformation of the spectral mesh near the nodes
corresponding to 0 = O. Note, however, that the
formulae (48) and (49) describe the deformation of the
spectral mesh in the vicinity of arbitrary node.

Taking into account that m =nand s =-5 for the

double eigenvalues }.,~~ at 0 = 0, we find from (48)

and (49) the expressions, describing splitting of the
double eigenvalue in due to action of gyroscopic forces
and an external spring



The branches of the hyperbola (50) intersect the axis
n = 0 at the values A = n and A = n + k 1(21l11.) in the

plane ImA versus n, see Fig. 9(a). The gap between
the branches decreases with the increase of the number
n of a mode. The lower branch passes through the
point corresponding to the node of the spectral mesh of
the non-perturbed gyroscopic system, which agrees with
the numerical results of [7, 13]. Remember that in case
of two-dimensional systems the reason for such a
degenerate behavior is a zero eigenvalue in the matrix
K of external potential forces.

Analogously, from (48) and (49) the asymptotic formula
follows describing the splitting of the double eigenvalue
in at n = 0 due to perturbation by the gyroscopic
forces and an external damper

. d d 2
2 2

(51) A=zn--± ---n n
4JZ' 16JZ'2

The real parts of the eigenvalues as functions of n
originate a bubble of instability in the plane (Re A ,n )

The ellipse (52) is submerged under the plane
Re A = 0 in the space (n, ImA, Re A) so that it
touches the plane at the origin, as shown in Fig. 9(b).
The ellipse (52) is connected with the branches of the
hyperbola of complex eigenvalues

The external damper creates a latent source of local
subcritical flutter instability exactly as it happens in two
dimensions when the matrix of dissipative forces D is
semi-definite, Le. when it has one zero eigenvalue. The
range of change of the gyroscopic parameter
corresponding to the latent instability is located
compactly around the origin and decreases with the
increase in n.

The deformation of the spectral mesh near the double
eigenvalue in at n =0 due to combined action of
gyroscopic forces and external friction is described by
the expression, following from (48) and (49)

(54) A = in ± (inn + 4:)2 __Jl_
2

_
,. 16JZ'2 .

The imaginary parts of the eigenvalues (54) are

They cross at the node (0, n), as in the non-perturbed

case. However, the crossing is degenerate because the
eigenvalue branches touch each other at the node, see
Fig. 9(c). Expanding expression (55) in the vicinity of
n = 0 we find that

(56) ImA=n±-l~1l11.Jllnl+O(n3/2).
2JZ'

Clearly, at n = 0 the imaginary parts do not split due to
non-conservative perturbation from the eyelet. For
n ~ 00 the imaginary parts asymptotically tend to
n(1 ± n). By this reason for small perturbations the

spectral mesh in the plane (lmA, n) looks non­
deformed at the first glance.

The real parts of the eigenvalues (55) are

The crossing of the real parts at n = 0 is degenerate
Fig. 9(c), which is confirmed by the expression

(58) ReA = ±-l-~1l11.JlI n 1+ O(n3
/
2).

2JZ'

For n ~ 00 the real parts (57) follow the asymptotic
law

3

(59) ReA=±£=t ~? ?+o(n-2
).

4JZ' 128JZ' n-n-
As is also seen in Fig. 9(c), the real parts almost always
are close to the lines ± JlI(4JZ'), except for the vicinity
of the node of the spectral mesh, where the real parts
rapidly tend to zero. This behavior agrees with the .
results of numerical cplculations of [13]. We see that the
double semi-simple eigenvalue in does not split due to
variation of only the parameter of non-conservative
positional forces Jl. In the two-dimensional case this

would correspond to the degenerate matrix N,
det N = 0 '. Since N is skew-symmetric, the
degeneracy means N == 0, Le. the absence of non­
conservative perturbation. In case of more then two
degrees of freedom the degeneracy of the operator of
non-conservative positional forces leads to the cuspidal
deviation of the generic splitting picture, see Fig. 9(c).
Hence, the source of perturbation of the rotating string
concentrated at one point leads to the deformation of its
spectral mesh, which is similar to that caused by the
semi-definite matrices of conservative, dissipative and
non-conservative forces in the two-dimensional case.



CONCLUSION: DISC BRAKE AS A MUSICAL
INSTRUMENT

Comparing the generic results obtained in the two­
dimensional case with that of the study of the rotating
string we have shown that the widely employed concept
of a point-wise contact leads to the semi-definite non­
generic perturbation operators which suppress generic
instability mechanism causing squeal. The further
progress i':l the squeal simulation seems to significantly
depend on creation of the models of distributed contact
that do not allow for such a degeneration.

It is known that dissipative and non-conservative forces
may influence the stability in a non-intuitive manner [5,
11, 25, 27, 36, 37, 45]. We have shown that the former
create the latent local sources of instability around the
nodes of the spectral mesh (bubbles of instability), while
the latter activate these sources by inflating and
destructing the bubbles. It turns out that the eigenvalues
of the damping matrix control the development of
instability. For better stability both of them should be
positive and stay far from zero. If one of the eigenvalues
of the damping matrix is close to zero or becomes
negative, the instability can occur with the weaker non­
conservative positional forces or even without them.

With the use of the perturbation theory of multiple
eigenvalues. we have obtained explicit formulas
describing the deformation of the spectral mesh by
dissipative and non-conservative perturbations. The
trajectories of eigenvalues are analytically described and
classified. The approximations of the domain of
asymptotic stability are obtained with the use of the
derivatives of the operator and the eigenvectors of the
double eigenvalues calculated at the nodes of the
spectral mesh. Singularities of the stability boundary of a
new type were found and their role in the development of
instability was clarified. The theory developed seems to
be the first analytical description of the basic mechanism
of friction-induced instabilities in rotating elastic bodies
of revolution.

among which are the glass harmonica and the disc of a
brake, is formed by the nodes of the spectral mesh,
corresponding to angular velocities in the. subcritical
range. The frictional contact is the source of dissipative
and non-conservative forces, which make the system
unstable in the vicinity of the nodes and force a rotating
structure to vibrate at a frequency close to the double
frequency of the node and at the angular velocity close
to that of the node. These conclusions agree with the
results of recent experiments with the laboratory brake
[39, 40, 41]. A particular frequency is selected by the
speed of rotation and the loading conditions, including
such parameters as the size of the friction pads and their
placement with respect to the disc.
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Zero eigenvalues of the damping operator encourage
the activation of the latent bubble of instability, while the
zero eigenvalue of the operator of non-conservative
positional forces suppresses this process. To get local
subcritical flutter instability, described in the previous
sections for the finite-dimensional model, the operators
of dissipative and non-conservative perturbations must
be generic, which excludes their semi-definiteness. One
of the ways to avoid this degeneracy is to consider not
pointwise [26] but distributed contact with the dissipative,
stiffness, and friction characteristics depending on the
material coordinates. A step in this direction is taken in
[46], where a model of distributed pads was developed.
For simplicity, in [46] the characteristics of the pins
constituting the pads were assumed not depending on
the coordinates, which caused the same semi-definite
degeneracy. This could be a reflection of the so-called
Herrmann-Smith paradox of a beam resting on a
Winkler-type elastic foundation and loaded by a follower
force [22]. The degeneracy in the Herrmann-Smith
problem is removed by assuming a non-uniform
modulus of elasticity. Similar modification of the model of
the distributed brake pads could give generic
perturbation operators so that the modeling of the disk
brake squeal will catch its most significant features.

'''''

Figure 9. Deformation of the spectral mesh of the rotating
string near the nodes (0,3), (0,2), and (0,1) caused by the
action of the external spring with k=0.3 (a), a damper with d=O.3
(b), and friction with f..l =0.3 (c).

As we already mentioned, the principle of activating
sound by friction is the same for a wine glass, a disc
brake, and the glass harmonica. The latter is an ancient
musical instrument for which the famous "Dance of the
Sugar Plum Fairy" in the first edition of "The Nutcracker"
ballet was composed by P.1. Tchaikowsky in 1891 [47].

The results obtained in the present paper show that the
"keyboard" of the rotating elastic bodies of revolution,
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