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Abstract: The paradox of destabilization of a conservative or non-conservative
system by small dissipation, or Ziegler’s paradox (1952), has stimulated a grow-
ing interest in the sensitivity of reversible and Hamiltonian systems with respect
to dissipative perturbations. Since the last decade it has been widely accepted
that dissipation-induced instabilities are closely related to singularities arising
on the stability boundary, associated with Whitney’s umbrella. The first ex-
planation of Ziegler’s paradox was given (much earlier) by Oene Bottema in
1956. We discuss aspects of the mechanics and geometry of dissipation-induced
instabilities with an application to rotor dynamics

1. Introduction

There is a fascinating category of mechanical and physical systems which exhibit the

following paradoxical behavior: when modeled as systems without damping they possess

stable equilibria or stable steady motions, but when small damping is introduced, some of

these equilibria or steady motions become unstable. A systematic survey of the literature is

given by Kirillov and Verhulst (2010).

The paradoxical effect of damping on dynamic instability was noticed first for rotor

systems which have stable steady motions for a certain range of speed, but which become

unstable when the speed is changed to a value outside the range. In 1924, Kimball studied

the destabilization of a flexible rotor in stable rotation at a speed above the critical speed

for resonance. In fact, in 1879 Thomson and Tait showed already that a statically unstable

conservative system which has been stabilized by gyroscopic forces could be destabilized again

by the introduction of small damping forces. However, the destabilization by damping, using

Routh’s theorems, is implicit in their calculations, it is not formulated as a paradox.

Ziegler’s paradox

In 1952 Hans Ziegler of ETH Zurich published a paper that became classical and widely



known in the community of mechanical engineers; it also attracted the attention of math-

ematicians. Ziegler was interested in flutter problems in aerodynamics and considered a

double pendulum, fixed at one end and compressed by a tangential end load. He unexpect-

edly encountered a phenomenon with a paradoxal character: the domain of stability of the

Ziegler’s pendulum changes in a discontinuous way when one passes from the case in which

the damping is very small to that where it has vanished, see Ziegler (1952, 1953).

In the conclusion to his classical book, Bolotin (1961) emphasized that the discrepancy

between the stability domains of undamped non-conservative systems and that of systems

with infinitesimally small dissipation is a topic of the greatest theoretical interest in stability

theory. Encouraging further research of the destabilization paradox, Bolotin was not aware

that the crucial ideas for its explanation were formulated by Bottema as early as 1956.

Surprisingly, this paper surpassed the attention of most scientists during five decades.

2. Bottema opened Whitney’s umbrella

In a remarkable paper of 1943, Hassler Whitney described singularities of maps from Rn

into Rm with m = 2n − 1. It turns out that in this case a special kind of singularity plays

a prominent role. Later, the local geometric structure of the manifold near the singularity

has been aptly called ‘Whitney’s umbrella’. In Fig. 1 we reproduce the original sketch of the

singular surface from the companion article (Whitney, 1944).

The basic idea is this. Consider a n-dimensional manifold with a singularity at the

origin. The manifold is mapped into m-space with m = 2n − 1. To be concrete, assume

n = 2, m = 3, the simplest interesting case. In a neighborhood of the origin it is possible to

find coordinates such that we have exactly

y1 = x2
1, y2 = x2, y3 = x1x2, (1)

so that y1 ≥ 0 and on eliminating x1 and x2:

y1y
2
2 − y2

3 = 0.

Starting on the y2-axis for y1 = y3 = 0, the surface widens up for increasing values of y1.

For each y2, the cross-section is a parabola; as y2 passes through 0, the parabola degenerates

to a half-ray, and opens out again (with sense reversed); see Fig. 1.

The analysis of singularities of functions and maps has become a fundamental ingredient

for bifurcation studies of differential equations. After the pioneering work of Hassler Whitney



Figure 1: Whitney’s original 1944 sketch of the umbrella.

and Marston Morse, it has become a huge research field, both in theoretical investigations

and in applications. In 1943 it was hard to imagine that this study of global analysis, a pure

mathematical abstraction, would find already an industrial application in the next decade.

Bottema’s solution

In 1956, there appeared an article by Oene Bottema (1901-1992), that outstripped later

findings for decades. Bottema’s work in 1955 can be seen as an introduction, it was directly

motivated by Ziegler’s paradox. In 1956 he considers a much more general class of small

oscillations of non-conservative systems near the equilibrium configuration x = y = 0:

ẍ + a11x + a12y + b11ẋ + b12ẏ = 0,

ÿ + a21x + a22y + b21ẋ + b22ẏ = 0,

where aij and bij are constants. The characteristic equation for the frequencies of the small

oscillations around equilibrium is

Q := λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where the parameters a1, · · · , a4 depend on the 8 parameters of the system. For the equi-

librium to be stable all roots of the characteristic equation have to be semi-simple and have

real parts which are non-positive, in the case of multiple eigenvalues the real parts have to

be negative. After a long linear algebra analysis, we find that the condition for the surface



V that separates stable and unstable motion is

a1a2a3 = a2
1 + a2

3

This is the equation of a surface V of the third degree, which we have to consider for a1 ≥ 0,

a3 ≥ 0. It is equivalent to Whitney’s umbrella in the case n = 2, m = 3. Note that we

started off with 8 parameters in the system, but that the surface V bounding the stability

domain is described by 3 parameters.

Interestingly, Bottema’s analysis in 1956 also shows that the ratio of the damping coef-

ficients is important. Explicitly, in the case of symmetric damping, b11 = b22, the destabi-

lization is not very effective. We show this by a simple example. Consider the system

ẍ + x + y + κ1ẋ = 0,

ÿ − x + ω2y + κ2ẏ = 0,

with damping coefficients (κ1, κ2 ≥ 0). The characteristic equation for the eigenvalues

becomes

(λ2 + κ1λ + 1)(λ2 + κ2λ + ω2) + 1 = 0.

Without damping, κ1 = κ2 = 0, the trivial solution is unstable if 0 < ω2 < 3 and stable if

ω2 > 3. In the case of stability, the eigenvalues are purely imaginary. If ω2 = 3 we have a

so-called Krein-collision.

We present the eigenvalues without and with damping for ω2 = 4 using MATLAB. We

have without damping

ω2 = 4, κ1 = κ2 = 0 eigenvalues :± 1.9021i, ±1.1756i.

A type of asymmetric damping: κ1 > 0, κ2 = 0.

ω2 = 4, κ1 = 0.1 eigenvalues :− 0.05851± 1.1736i, +0.0085± 1.9029i;

ω2 = 4, κ1 = 0.2 eigenvalues :− 0.1164± 1.1678i, +1.0164± 1.9053i.

Damping in the first degree of freedom (x) destabilizes. Now symmetric damping:

ω2 = 4, κ1 = κ2 = 0.1 eigenvalues :− 0.0500± 1.9015i, −0.0500± 1.1745i;

ω2 = 4, κ1 = κ2 = 0.2 eigenvalues :− 0.1000± 1.8995i, −0.1000± 1.1713i.

In the case of symmetric damping we have not necessarily destabilization.



3. Parametric resonance in systems with dissipation.

Parametric resonance arises usually in applications if we have an independent (periodic)

source of energy. The classical example is the mathematical pendulum with oscillating

support and a typical equation studied in this context is the Mathieu equation. See Fig.

2(a) for this classical case.

In applications with parametric excitation where usually more degrees of freedom play a

part, many combination resonances are possible. In what follows, the so-called sum resonance

will be important.

Rotor dynamics without damping

The effects of adding linear damping to a parametrically excited system have already been

observed and described in for instance Bolotin (1963). The following example is based on

Ruijgrok et al. (1993), see also Hoveijn and Ruijgrok (1995).

Consider a rigid rotor consisting of a heavy disk of mass M which is rotating with

constant rotation speed Ω around an axis. The axis of rotation is elastically mounted on

a foundation; the connections which are holding the rotor in an upright position are also

elastic. Assuming small oscillations in the upright position, frequency 2η, the equations of

motion without damping become after rescaling:

ẍ + 2αẏ + (1 + 4εη2 cos 2ηt)x = 0,

ÿ − 2αẋ + (1 + 4εη2 cos 2ηt)y = 0. (2)

The parameter α is proportional to the rotation speed Ω. System (2) constitutes a conserva-

tive system of coupled Mathieu-like equations. The natural frequencies of the unperturbed

system (2), ε = 0, are ω1 =
√

α2 + 1 + α and ω2 =
√

α2 + 1 − α. It is shown in Ruijgrok

et al. (1993), using complex variables, that we can transform this system to two identical

Mathieu equations.

Using the classical and well-known results for the Mathieu equation, we conclude that

the trivial solution is stable for ε small enough, provided that
√

1 + α2 is not close to nη ,

for n = 1, 2, 3, .... The first-order and most prominent interval of instability, n = 1, arises if
√

1 + α2 ≈ η. Note that this instability arises when:

ω1 + ω2 = 2η,

i.e. when the sum of the eigenfrequencies of the unperturbed system equals the excitation

frequency 2η which is the sum resonance of first order. The domain of instability is bounded



Figure 2: (a) The classical case as we find for instance for the Mathieu equation with

and without damping; in the case of damping the instability tongue is lifted off from the

η-axis and the instability domain is reduced. (b) The instability tongues for the rotor

system. Again, because of damping the instability tongue is lifted off from the η-axis, but

the tongue broadens. The boundaries of the V -shaped tongue without damping are to first

approximation described by the expression η =
√

1 + α2(1± ε), η0 =
√

1 + α2.

by:

ηb =
p

1 + α2 (1± ε) + O(ε2) . (3)

See Fig. 2(b) where the V-shaped instability domain is presented in the case of rotor rotation

(α 6= 0) without damping. Higher order combination resonances can be studied in the same

way; the domains of instability in parameter space continue to narrow as n increases.

Rotor dynamics with damping

We add small linear damping to system (2), with positive damping parameter µ = 2εκ. This

leads to the equations:

ẍ + 2αẏ + (1 + 4εη2 cos 2ηt)x + 2εκẋ = 0,

ÿ − 2αẋ + (1 + 4εη2 cos 2ηt)y + 2εκẏ = 0. (4)

Because of the damping term, we can no longer reduce the system to two identical second

order real equations, as we did previously.

To calculate the instability interval around the value η0 = 1
2
(ω1 + ω2) =

√
α2 + 1, we

apply normal form or (periodic solution) perturbation theory, see Ruijgrok et al. (1993) for



details, to find for the stability boundary:

ηb =
p

1 + α2

0
@1±

s
(1 + α2)ε2 −

ţ
µ

2η0

ű2

+ ....

1
A . (5)

It follows that, as in other examples we have seen, the domain of instability actually becomes

larger when damping is introduced. See Fig. 2b.

The instability interval, shows a discontinuity at κ = 0. If µ or κ → 0, then the

boundaries of the instability domain tend to the limits ηb →
√

1 + α2(1± ε
√

1 + α2) which

differs from the result we found when κ = 0 : ηb =
√

1 + α2(1±ε). For reasons of comparison,

we display the instability tongues in Fig. 2 in the four cases with and without rotation, with

and without damping.

Mathematically, the bifurcational behavior is again described by the Whitney umbrella

as indicated before. In mechanical terms, the broadening of the instability-domain is caused

by the coupling between the two degrees of freedom of the rotor in lateral directions which

arises in the presence of damping.

4. Conclusions

• It is remarkable that Bottema’s solution in 1956 was ignored for such a long time. For

instance Google Scholar gives no citations of the paper in the period 1956-2008.

• The generality of the results described in section 2, enable us to discuss the part

played by symmetric damping. One should consult the original 1956 paper to observe

the behavior of the eigenvalues with regards to the damping coefficients.

• In the context of dissipation-induced instability, the influence of asymmetric and

symmetric damping was studied extensively by Kirillov (2005b, 2007), Kirillov and

Seyranian (2005a). In these papers Bottema’s results were also generalized to higher

(more than 4) dimensions. For the rotor system of section 3, the analysis regarding

asymmetric damping was carried out by Hoveijn and Ruijgrok (1995).

• Note that the phenomena described here are basically linear and in this sense com-

plete as locally the dynamics is dominated by the linear terms. Further away from

equilibrium and in some critical cases, Krein-collision or small real parts near the

umbrella surface, nonlinear terms may come into play.
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