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1 Introduction

The self-excited vibrations in brakes known as the brake squeal phenomenon is a
challenging problem for the modern rotor dynamics (see e.g., recent overviews by
Kinkaid et al. (2003), Ouyang et al. (2005), Chen et al. (2006) and Hoffmann and Gaul
(2008)), because its “reliable reproduction or even prediction . . . is still not possible”
(Ostermeyer andMüller, 2008). Structural modification of the elements of a brake such
as a rotor and pads is considered as an obvious passive counter-measure directed on
elimination of propensity of the brake to a squeal, see, e.g., Abu Bakar et al. (2008),
Penninger and Swift (2004) and Fieldhouse et al. (2004, 2008). The attempts to find
the perfect brake are, however, still extensively based on the ‘trial-and-error’ method
(Ostermeyer and Müller, 2008).

Some research works have examined simplified models of rotating elastic bodies
of revolution in frictional contact and studied numerically the sensitivity of the
onset of the self-excited vibrations with respect to the geometry of the friction pads.
Xiong and Hutton (1994) have investigated a rotating circular string with point and
distributed restraining springs and found that the arc length of the elastic support
is one of the factors determining which crossings of the eigenvalue branches of the
Campbell diagram (Campbell, 1924) veer away into avoided crossings. Despite the
perturbed string remains stable in the subcritical rotational speed range, the observed
highly selective effect of the geometry of the elastic support allows one to expect
that with dissipative and non-conservative forces taken into account the structural
modification of the pads similarly will most easily excite a particular mode in the
vicinity of the locations of the double eigenvalues in the Campbell diagram. In a recent
work, Kang et al. (2008) confirmed this expectation by demonstrating the selective
properties of the contact span angle for the squeal onset in the models of a thin disk
with finite frictional contact area. Experimental research of Fieldhouse et al. (2008)
andOura et al. (2008) revealed the sensitivity of the friction-induced instabilities to the
distributed contact pressure and stiffness fluctuations.

The need for a rational design of the brake components as well as the inevitable
uncertainties in the tribological properties of the pads makes it reasonable to look at
the multiparameter stability analysis of a brake as at a non-conservative structural
optimisation problemwith respect to stability criteria. Then, themerit functional is the
critical value of one of the crucial well-measurable parameters at the onset of squeal
or even the eigenvalues themselves whereas the design variables are those describing
the material and geometrical properties of the pads. We would like to know where the
variations in the design should be made in order to influence the stability of a desirable
vibration mode and to assign the real part of the corresponding eigenvalue to the left
side of the complex plane.

In a recent work Ouyang (2008) revealed that it is quite difficult and sometimes
even impossible to assign the real parts of eigenvalues in friction-induced vibration
problems by means of mass, stiffness and damping modifications to stabilise the
system. It is well-known, however, that themain obstacles in the problems of structural
optimisation are that the merit functional is generally non-smooth with respect to the
design variables (Seyranian et al., 1994); in non-conservative problems the functional
is additionally non-convex (Kirillov and Seyranian, 1998). The singular points of the
functional, frequently related to multiple eigenvalues, complicate considerably the
geometry of the stability domain. Therefore, the sensitivity analysis of the multiple
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eigenvalues as well as the analysis of the corresponding singular points of the stability
frontier is bynecessity required for the correct solving structural optimisationproblems
in the non-conservative systems possessing friction-induced vibrations.

2 Disk brake as an axially symmetric rotor with an anisotropic stator

Linear stability analysis iswidely used topredict possible instabilities in thedynamics of
rotor systems to which the disk brake can be attributed. The presence of imperfections
in rotor and stator makes the operator of the linearised equations of motion
non-self-adjoint with time-dependent coefficients, which considerably complicates the
stability analysis (Lee et al., 2007). Nevertheless, an axially symmetric rotor with an
anisotropic stator as well as an asymmetric rotor with an isotropic stator can be
describedas anautonomousnon-conservative gyroscopic system (Genta, 2007).Unless
the vented disk or the disk with specially manufactured symmetry-breaking pattern
(Fieldhouse et al., 2004) is considered, the model of an axially symmetric rotor with an
anisotropic stator is reasonable for the description of the disk brake as well as for the
description of other sound-emitting rotating elastic bodies of revolution in frictional
contact such as the drum brake or the glass harmonica (Kirillov, 2008a).

When the brake pads are not applied, the unperturbed system is assumed to
be isotropic with the constant speed of the rotor Ω. It is described by the equations
of a standard non-dimensional form (Genta, 2007)(

M̃ 0
0 M̃

)
z̈+ 2Ω

(
0 −G̃
G̃ 0

)
ż+

[(
P̃ 0
0 P̃

)
+ Ω2

(
G̃2 + C̃ 0

0 G̃2 + C̃

)]
z= 0, (1)

with z = R
2n and M̃ = diag(1, 1, . . . , 1), G̃ = diag(1, 2, . . . , n), P̃ = diag(ω2

1 , ω2
2 , . . . ,

ω2
n), and C̃ = diag(c2

1, c
2
2, . . . , c

2
n), see also Spelsberg-Korspeter et al. (2009).

Equation (1) generalises the two-dimensional setting considered by Kirillov (2008b).
At standstill the eigenvalues of the system iωs are double semi-simple with two

linearly independent eigenvectors. The distribution of the doublets ωs as a function of
the integer index s is usually different for various bodies of revolution. For example,

ωs = s corresponds to the natural frequency fs = s
2πr

√
P
ρ of a circular string of

radius r, circumferential tension P and mass density ρ per unit length (Xiong and
Hutton, 1994). The natural frequency of the doublet mode with one nodal circle and

s nodal diameters fs = ω2
sh

2πa2

√
E

12ρ(1−ν2) of the clamped-free annular disk of thickness

h, inner radius b, outer radius a, mass per unit volume ρ, Poisson’s ratio ν, and elastic
modulus E corresponds to the non-dimensional eigenvalue constant ωs, which can
be found numerically for a given Poisson’s ratio and radius ratio b/a. According to
Gabrielson (1999) for ν = 0.3 and b/a = 0.1 the first two constants are ω1 = 5.2605,
and ω2 = 6.0779. Notice that in experiments squeal noise often associates with the
rotor vibrating modes having just nonzero number of nodal diameters (Fieldhouse
and Beveridge, 2000).

In the following we prefer to consider equation (1) in a new equivalent form that
shows the doublets explicitly

ẍ + 2ΩGẋ + (P + Ω2(G2 + C))x = 0, (2)
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where x = R
2n, P = diag(ω2

1 , ω2
1 , ω2

2 , ω2
2 , . . . , ω2

n, ω2
n) = PT is the stiffness matrix of

the rotor, C = diag(c2
1, c

2
1, c

2
2, c

2
2, . . . , c

2
n, c2

n) is the matrix of the centrifugal stiffness,
and G = −GT is the matrix of gyroscopic forces defined as

G = blockdiag(J, 2J, . . . , nJ), J =
(

0 −1
1 0

)
. (3)

Separating time by the substitution x = u exp(λt) into equation (2), we arrive at the
eigenvalue problem for the matrix operator L0

L0(Ω)u := (Iλ2 + 2ΩGλ + P + Ω2(G2 + C))u = 0. (4)

As a consequence of the block-diagonal structure of the sparse matrices G and P,
the eigenvalues of L0 are found explicitly as

λ±
s = i

√
ω2

s + c2
sΩ2 ± iΩs, λ±

s = −i
√

ω2
s + c2

sΩ2 ∓ iΩs, (5)

where bar over a symbol denotes complex conjugate. Rotation causes the doublet
modes ±iωs to split. The newborn pair of simple eigenvalues λ±

s corresponds to the
forward and backward travelling waves, which propagate along the circumferential
direction. Viewed from the stationary frame, the frequency of the forward travelling
wave appears to increase and that of the backward travelling wave appears to decrease,
as the spin increases. Double eigenvalues thus originate again at non-zero angular
velocities, forming the nodes of the spectral mesh (Kirillov, 2008b) of the crossed
frequency curves in the Campbell diagram in the plane ‘frequency’ vs. ‘angular
velocity’.

At the angular velocity

Ωcr
s =

ωs√
s2 − c2

s

,

the frequency of the sth backward travelling wave vanishes to zero (λ±
s = λ±

s =
0), so that the wave remains stationary in the non-rotating frame. Campbell (1924)
calls these velocities critical whereas Genta (2007) refers to them as the thresholds
of (divergence) instability. We define the lowest one of such velocities as critical
and denote it Ωcr. When the speed of rotation exceeds the critical speed, some
backward waves, corresponding to the eigenvalues λ±

s , travel slower than the disk
rotation speed and appear to be travelling forward (reflected waves). The effective
energy of the reflected wave is negative and that of the forward and backward
travelling waves is positive. Therefore, in the subcritical speed region |Ω| < Ωcr all
the crossings of the frequency curves correspond to the forward and backward modes
of the same signature, while in the supercritical speed region |Ω| > Ωcr there exist
crossings that are formed by the reflected and forward/backward modes of opposite
signature. As a consequence of the fundamental Krein’s theorem (MacKay, 1986),
under perturbations preserving the Hamiltonian structure of the equations of motion
the crossings in the subcritical region veer away into avoided crossings (stability),
while in the supercritical region the crossings with the mixed signature turn into the
rings of complex eigenvalues – bubbles of instability (MacKay, 1986) – leading to
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flutter known also as the ‘mass and stiffness instabilities’ (Mottershead, 1998) or as
the “resonance with the static force applied in a direction perpendicular to the disk
rotation plane” (Genta, 2007).

A supercritical flutter frequently occurs in the high speed applications like turbines,
circular saws, and computer storage devices, while the subcritical flutter – either
desirable as a source of instability at low speeds as in the case of musical instruments
like the singing wine glass and a glass harmonica or undesirable as in the case of the
squealing disk- and drum brakes – is an elusive phenomenon.

In the following, using perturbation theory of multiple eigenvalues we show that
even if the eigenvaluebranches in the subcritical regionarewell separatedat the avoided
crossings, created by the stiffness variation of the stator, they can be forced to bend
with the origination of arcs of complex eigenvalues with positive real parts by the
indefinite damping, which comes to the equations of motion, e.g., from the negative
friction-velocity gradient (Hagedorn, 1988; Spurr, 1961). In the space of the gyroscopic,
damping, and stiffness parameters the zones of the subcritical dissipation-induced
flutter turn out to be cones with the apexes at the points, corresponding to the
nodes of the spectral mesh. We show that the orientation of the cone is substantially
determined by the structure of the damping matrix, which can be chosen in such a
way that the system is unstable even for significant magnitudes of the stiffness matrix
detuning. The conical zones of the subcritical flutter bifurcate into the geometrically
more complicated domains having couples of Whitney’s umbrella singularities when
non-conservative positional forces (originated from the follower forces or from the
moment generated by variation in friction forces, see Ouyang et al. (2005), Chen et al.
(2006) and Kang et al. (2008)) are additionally taken into account. We describe in
detail this process and discuss how the consequences of this nontrivial geometry of
the space of the design parameters complicates the search for an optimal structural
modification of the brake pads.Wewill explicitly demonstrate how tonavigate through
the singularities in the parameter space on the examples of the modification of the
stiffness, damping and non-conservative matrices leading to the assignment of stable
and unstable eigenvalues corresponding to the desirable vibration modes.

3 Sensitivity analysis of the doublet modes

The equations of motion of the disk brake with the applied friction pads can be
considered as a perturbation of the system (2), which yields the variation of the
stiffness, damping, and non-conservative positional (circulatory) terms

ẍ + (2ΩG + δD)ẋ + (P + Ω2(G2 + C) + κK + νN)x = 0, (6)

where the damping, D, stiffness, K, and non-conservative, N, matrices can depend
on Ω. The intensity of the perturbation is controlled by the factors δ, κ and ν.
For a given structure of the matrices, stability depends on the correctly chosen
combination of the parameters (Chevillot et al., 2008; Kirillov, 2008b). When the
intensities δ, κ, and ν are fixed, one affects the eigenvalue assignment by modifying the
structure of the corresponding matrices (see, e.g., Ouyang, 2008).

For simplicity we restrict our subsequent consideration by 2n = 4 degrees of
freedom and neglect the centrifugal stiffening,C, in equation (6). Then, we can choose
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the eigenvectors u+
s , corresponding to the eigenvalues λ+

s = iωs + isΩ and λ−
s =

−iωs + isΩ of the unperturbed isotropic rotor system as

u+
1 = (−i, 1, 0, 0)T , u+

2 = (0, 0,−i, 1)T , (7)

where i =
√−1, and the eigenvectors u−

s , corresponding to the eigenvalues
λ−

s = iωs − isΩ and λ+
s = −iωs − isΩ, as

u−
1 = (i, 1, 0, 0)T , u−

2 = (0, 0, i, 1)T . (8)

Consider a double semi-simple eigenvalue λ0 at the crossing of the eigenvalue
branches λε

s = iαωs + iεsΩ and λσ
t = iβωt + iσtΩ, where α, β, ε, σ = ±1.

Denote the corresponding eigenvectors uε
s and uσ

t .
The double eigenvalue λ0 and the value of the gyroscopic parameter Ω0 at the

crossing are

Ω0 =
αωs − βωt

σt − εs
, λ0 = i

ασωst − βεωts

σt − εs
= iω0, (9)

and the following useful relations hold

λ0 − εisΩ0 = iαωs, λ0 − σitΩ0 = iβωt. (10)

Let M be one of the perturbing matrices D, K or N. In the following we will use the
decomposition of the matrix M ∈ R

4×4 into the blocks Mst ∈ R
2×2

M =
(
M11 M12

M21 M22

)
, Mst =

(
m2s−1,2t−1 m2s−1,2t

m2s,2t−1 m2s,2t

)
. (11)

Thus, Dst = DT
ts, Kst = KT

ts, and Nst = −NT
ts.

We consider a general perturbation of the matrix operator of the isotropic
rotor L0(Ω) + ∆L(Ω). The size of the perturbation ∆L(Ω) = δλD + κK + νN ∼ ε
is small, where ε = ‖∆L(Ω0)‖ is the Frobenius norm of the perturbation at Ω = Ω0.
For small Ω and ε perturbation of the double semi-simple eigenvalue λ0 = iω0 with
the eigenvectors uε

s and uσ
t at Ω = Ω0, is given by the formula

det(F + (λ − λ0)H) = 0, (12)

where the entries of the matrices H and F are

Hεσ
st = 2iω0(ūε

s)
T uσ

t + 2Ω0(ūε
s)

T Guσ
t , (13)

F εσ
st = (2iω0(ūε

s)
T Guσ

t + 2Ω0(ūε
s)

T G2uσ
t )(Ω − Ω0)

+ iω0(ūε
s)

T Duσ
t δ + (ūε

s)
T Kuσ

t κ + (ūε
s)

T Nuσ
t ν. (14)

When δ = 0, ν = 0, and κ = 0, the non-diagonal terms of the matrices H and F are
zero, while the diagonal ones with the use of the relations (10) take the form

Hεε
ss = 4iαωs, F εε

ss = 4sεαωs(Ω − Ω0), (15)

Hσσ
tt = 4iβωt, Fσσ

tt = 4tσβωt(Ω − Ω0). (16)
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Therefore, at the crossing (9) the perturbation formula (12) describes correctly the
eigenvalue branches: ∆λ = is∆Ωε and ∆λ = it∆Ωσ, where ε, σ = ±1.

Owing to the relative simplicity of the matrices of the unperturbed system and
therefore its eigenvectors, we can calculate the scalar products in equation (14) and
express them by means of the entries djk, kjk, and njk of the damping, stiffness, and
non-conservative matrices

(ūε
s)

T Duσ
t = σtrDstIεσ + itrDstJεσ, (17)

(ūε
s)

T Kuσ
t = σtrKstIεσ + itrKstJεσ, (18)

(ūε
s)

T Nuσ
t = σtrNstIεσ + itrNstJεσ, (19)

where the auxiliary 2 × 2 matrices used for the compactness of the notation are

Iεσ =
(

ε 0
0 σ

)
, Jεσ =

(
0 −σ
ε 0

)
. (20)

With the coefficients (13)–(19) the sensitivity of the doublet λ0 at the crossing (9)
of the Campbell diagram is described by the expression, which generalises the
result of Kirillov (2008b) obtained for the case of two degrees of freedom,

∆λ = i
∆Ω
2

(sε + tσ) +
i

8

(
A1

αωs
+

B1

βωt

)
± i

√
c, (21)

where

c =
[
∆Ω
2

(sε − tσ) +
1
8

(
A1

αωs
− B1

βωt

)]2

− A2
2 + B2

2

16αβωsωt
, (22)

and

A1 = δλ0trDss+κtrKss+ε2iνn2s−1,2s,

B1 = δλ0trDtt+κtrKtt+σ2iνn2t−1,2t,
(23)

A2 = σνtrNstIεσ + i(δλ0trDstJεσ + κtrKstJεσ),

B2 = σνtrNstJεσ − i(δλ0trDstIεσ + κtrKstIεσ).

It is remarkable that the formulas (21)–(23) describe sensitivity of the Campbell
diagram with respect to the structural modification of the stator in the vicinity of the
doublets in terms of the elements of the four block matrices decomposing the original
operators of damping, stiffness, and non-conservative positional forces. This means
that one can substantially affect the eigenvalue assignment varying relatively small
number of parameters in the original matrices! In the following sections we will
explicitely demonstrate this effect.
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4 Stiffness modifications

First we examine modifications of the stiffness matrix only. The Campbell diagram
near the crossing of the eigenvalue branches λε

s = iαωs + iεsΩ and λσ
t = iβωt + iσtΩ

of the unperturbed system is then approximately

∆λ = i

(
κ

8

(
α

trKss

ωs
+ β

trKtt

ωt

)
+

∆Ω
2

(sε + tσ)
)

± i
√

cκ, (24)

with

cκ =
(

κ

8

(
trKss

αωs
− trKtt

βωt

)
+

∆Ω
2

(sε− tσ)
)2

+
κ2

16
(trKstIεσ)2 + (trKstJεσ)2

αβωsωt
.

(25)

When the radicand cκ is positive (which is always fulfilled for αβ > 0), the
eigenvalues remain purely imaginary. For negative values of cκ the real parts of
the eigenvalues can develop, yielding a non-trivial decay rate plot in addition to the
Campbell diagram. The real parts are positive inside the sector in the (Ω, κ)-plane
bounded by the stability frontiers, which in the first approximation are straight lines
cκ = 0

κ =
4(sε − tσ)(Ω − Ω0)

k2t−1,2t−1 + k2t,2t

βωt
− k2s−1,2s−1 + k2s,2s

αωs

± 2

√
(εk2s−1,2t−1 + σk2s,2t)2 + (εk2s−1,2t − σk2s,2t−1)2

−αβωsωt


. (26)

Using formula (26) we now demonstrate the selective properties of the stiffness matrix
modification. As a model problem we consider a rotor system with two doublets at
standstill chosen to be ω1 = 5 and ω2 = 6 for simplicity of analytical expressions;
from the other hand they mimic the first two eigenvalue constants of the clamped-free
annular diskwith one nodal circle andone and twonodal diameters (Gabrielson, 1999).

For positive Ω and κ the Campbell diagram of the isotropic rotor possesses two
modal critical speeds Ωcr

1 = 3 and Ωcr
2 = 5 with double zero eigenvalues. Substituting

ε = −σ = −1, α = −β = 1 and s = t = 2 into equation (26) we find the stability
frontiers corresponding to the first modal critical speed, Ωcr

1 = 3,

κ =
8ω2(Ω − 3)

k33 + k44 ∓ √
(k33 − k44)2 + (k34 + k43)2

. (27)

For the second modal critical speed, Ωcr
2 = 5, we have s = t = 1 and ε = −σ = −1,

α = −β = 1, which yields

κ =
4ω1(Ω − 5)

k11 + k22 ∓ √
(k11 − k22)2 + (k12 + k21)2

. (28)

Expressions (27) and (28) describe the boundaries of the divergence instability
domains corresponding to the positive real eigenvalues.
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The only crossing with the non-zero double eigenvalue that exists in the
supercritical speed range Ω > 3

(Ω0 = 11/3, ω0 = 4/3) for s = 1, t = 2, ε = −σ = −1, α = −β = 1, (29)

yields the flutter domain in the (Ω, κ)-plane with the stability frontiers

κ =
12(Ω − 11/3)

k11+k22
ω1

+ k33+k44
ω2

∓ 2
√

(k13−k24)2+(k14+k23)2
ω1ω2

. (30)

In the subcritical range Ω < 3 there exist only four crossings of the eigenvalue
branches, whose locations in the Campbell diagram are

(Ω0 = 0, ω0 = 5) for s = 1, t = 1, ε = −σ = 1, α = β = 1,

(Ω0 = 0, ω0 = 6) for s = 2, t = 2, ε = −σ = 1, α = β = 1,
(31)

(Ω0 = 1/3, ω0 = 16/3) for s = 1, t = 2, ε = −σ = 1, α = β = 1,

(Ω0 = 1, ω0 = 4) for s = 1, t = 2, ε = σ = −1, α = β = 1.

Figure 1(a) shows the Campbell diagram of the isotropic rotor with all the above
mentioned seven types of possible crossings. The four subcritical crossings of the
Campbell diagram of the isotropic rotor can only veer away due to the stiffness matrix
modification. The largest spectral gap between the eigenvalue branches at ∆Ω = 0 is
given by the expression 2

√
cκ, where the constant cκ for each of the four crossings

listed in (31) is

(0, 5) : cκ =
κ2

16ω2
1
[(k11 − k22)2 + (k12 + k21)2],

(0, 6) : cκ =
κ2

16ω2
2
[(k33 − k44)2 + (k34 + k43)2],(

1
3
,
16
3

)
: cκ =

κ2

64

(
k11 + k22

ω1
− k33 + k44

ω2

)2

+
κ2

16
(k13 − k24)2 + (k14 + k23)2

ω1ω2
,

(1, 4) : cκ =
κ2

64

(
k11 + k22

ω1
− k33 + k44

ω2

)2

+
κ2

16
(k13 + k24)2 + (k14 − k23)2

ω1ω2
. (32)

The formulas (27), (28), (30) and (32) demonstrate that the crossings situated on
the lines Ω = 0 and Imλ = 0 are influenced only by the entries of one of the
two diagonal 2 × 2 subblocks of the stiffness perturbation matrix K. Moreover,
the pairs of the crossings (0, 5) and (5, 0) as well as (0, 6) and (3, 0) respond
coherently to the variation of the very same entries – the effect found earlier by
Xiong and Hutton (1994) in the rotating circular string with the partial elastic
support. All the other crossings respond also to the changes in the entries of the
two – anti-diagonal – subblocks of the matrix K.
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Figure 1 (a) Campbell diagram of the isotropic rotor; (b)–(d) numerical calculations showing
the veering and merging of modes, which were selectively caused by the modification
of the stiffness matrix K with κ = 1.5; (e) and (f) red regions are linear
approximations (30) and (28) to the supercritical flutter and divergence domains
corresponding to the diagrams (c) and (d), respectively (see online version for
colours)

To illustrate the consequences of the performed sensitivity analysis we construct
three different stiffness modification matrices with the use of the formulas (27), (28),
(30) and (32)

K1 =


5 0 1 2
0 5 −2 1
1 −2 6 0
2 1 0 6

, K2 =


5 0 1 2
0 5 2 −1
1 2 6 0
2 −1 0 6

, K3 =


5 2 0 0
2 5 0 0
0 0 6 0
0 0 0 6

. (33)

Then, we numerically calculate the spectrum of the eigenvalue problem
corresponding to the equation (6) with K = K1, K = K2, and K = K3 for the same
κ = 1.5.

Figure 1(b) shows that the matrix K1 selectively affects only the subcritical
crossing (1, 4), which veers away into the avoided crossing in the (Ω, Imλ)-plane.
Eigenvalues at all the remaining crossings are non-distinguishable from the double
ones within the precision of the used numerical method. The reason is that with the
matrix K1 the radicands in the expressions (27), (28) and (30) as well as in the first
three expressions (32) are zero, which means non-splitting in the first approximation.
According to the last of the expressions (32), theonlynon-zero spectral gap corresponds
to the crossing (1, 4).
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With the matrix K2 only the equation (30) and the third of equation (32) yield a
non-trivial splitting at the crossings (11/3, 4/3) and (1/3, 16/3), respectively. This is
confirmed by the numerical calculations shown inFigure 1(c). ThematrixK3 possesses
non-trivial splitting only in the equation (28) and in the first of the equation (32),
corresponding to the crossings (0, 5) and (5, 0), which is in agreement with the
numerical results of Figure 1(d). From Figure 1(e) and (f) it is clear that the linear
approximations to the flutter and divergence instability domains (30) and (28) are in
a very good qualitative and quantitative agreement with the numerically computed
Campbell diagrams of Figure 1(c) and (d).

As it is seen from the numerical computations, the Campbell diagram of the
perturbed isotropic rotor is essentially changed in the vicinity of the locations of
the doublets of the unperturbed rotor. These loci are the true ‘centres of control’,
because themain qualitative changes of the whole Campbell diagram can be effectively
predicted by the sensitivity analysis of the double eigenvalues, whose number is finite
and relatively small. Owing to the simplicity of the matrices of the unperturbed system
the conditions describing eigenvalue assignment have a simple and explicit form and
are expressed through the elements of the stiffness matrix. In the subsequent sections
we show that in the presence of the damping and non-conservative positional forces
similar conclusions can be made not only with respect to the Campbell diagram but
also to the decay rate plots.

5 Stiffness and damping modifications

Assuming ν = 0 in the equation (21), then separating real and imaginary parts in it
and equating the real part of the perturbed eigenvalues to zero we find the linear
approximation to the surface separating stability and instability domains of the
axisymmetric rotor perturbed by the potential and damping forces coming from its
interaction with the stator[

trDsstrDtt

[
4(sε − tσ)∆Ω + κ

(
trKss

αωs
− trKtt

βωt

)]
− κQ

(
trDss

αωs
− trDtt

βωt

)]2

+ κ2
(

trDss

αωs
+

trDtt

βωt

)2

[trDsstrDtt((trKstIεσ)2 + (trKstJεσ)2) − Q2]

= δ2ω2
0

(
trDss

αωs
+

trDtt

βωt

)2

trDsstrDtt((trDstIεσ)2

+ (trDstJεσ)2 − trDsstrDtt), (34)

whereQ = trKstIεσtrDstIεσ + trKstJεσtrDstJεσ. In general, equation (34) describes
a conical surface in the (Ω, κ, δ)-space.Orientation of the cone depends on the structure
of the matrices K and D, that is, on the modification of the stiffness and damping
characteristics of the stator.

For the crossings of the Campbell diagram situated on the axis Ω = 0 the
expression (34) greatly simplifies. Indeed, substituting s = t, σ = −ε, and α = β into
equation (34) and rearranging its terms we find

κ2Ass + s2Ω2(2ωstrDss)2 = − detDss(ωstrDss)2δ2, (35)
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with the coefficient Ass defined as

Ass = detDss(ρ1(Kss) − ρ2(Kss))2

+ (d2s−1,2s(k2s−1,2s−1 − k2s,2s) − k2s−1,2s(d2s−1,2s−1 − d2s,2s))2, (36)

where ρ1(Kss) and ρ2(Kss) are the eigenvalues of the 2 × 2 submatrix Kss of the
4 × 4 stiffness matrix K.

For the definite submatrix Dss we have Ass > 0 because detDss > 0.
Consequently, for δDss > 0 the stability conditions

δtrDss > 0, κ2Ass + s2Ω2(2ωstrDss)2 > − detDss(ωstrDss)2δ2 (37)

are always fulfilled. Since detDss < 0 in case of indefinite matrix Dss, the
inequalities (37) indicate that the flutter instability domain for Ass > 0 is inside the
conical surface extended along the δ-axis and the stability domain is adjacent to
the cone’s skirt selected by the condition δtrDss > 0, see Figure 2(a).

Figure 2 Domains of the subcritical flutter instability associated with the doublet iωs situated
on the axis Ω = 0 of the Campbell diagram for the indefinite submatrix Dss in the
absence of the non-conservative positional forces when: (a) Ass > 0; (b) Ass = 0
and (c) Ass < 0

The conical domain is stretched along the κ-axis when Ass tends to zero and it is
transformed into a dihedral angle when Ass = 0, as shown in Figure 2(b). With the
further decrease in Ass the dihedral angle is again wrapped into the conical surface
which is then extendedalong theΩ-axis, Figure 2(c). Thedomainof asymptotic stability
is inside the half of the cone selected by the inequality δtrDss > 0. Note that the
threshold Ass = 0, separating the indefinite damping matrices, coincides with that
found first by Kirillov (2007a) from the criteria of Routh and Hurwitz for a general
two-dimensional non-conservative gyroscopic system with dissipation.
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In the plane (Ω, κ) for a fixed δ > 0 the instability domain has, respectively, the
form of an ellipse, Figure 2(a), a stripe, Figure 2(b), or a region contained between the
branches of a hyperbola, Figure 2(c). The latter picture shows that even considerable
stiffness modification separating the eigenvalue branches of the undamped system,
cannot always prevent from the development of the flutter instability in the presence
of indefinite damping, which originates from the brake pads with the negative
friction-velocity gradient (Hagedorn, 1988; Spurr, 1961).

Bifurcation of the stability diagrams with the change of the entries of the
matrices D and K can also explain the well-known unsatisfactory reproducibility
of experiments with disk brake. Indeed, some parameters like rotational speed and
pressure on the brake pads can be regulated precisely, while the topography of the
pads’ surface as well as the material properties of the pads undergo uncontrollable
changes from one run of the experiment to the other owing to the heating, cooling, and
wear. As a consequence, the very same values of stiffness parameter κ and rotational
speed Ω, which yield flutter instability and squeal for Ass < 0, Figure 2(c), make the
brake quiet for Ass > 0 owing to the qualitative change of the stability diagram with
the change in the structure of the matrices D and K, Figure 2(a). This effect becomes
even more pronounced in the presence of non-conservative positional forces, because,
as we show in the next section, the conical stability boundaries are not structurally
stable under small perturbations νN.

Now we demonstrate how the developed perturbation technique allows one to
predict the onset of the flutter instability and the critical value of the eigenfrequency
at the onset. The real and imaginary parts of the eigenvalues λ that are born after the
splitting of the doublet iωs situated on the axis Ω = 0 are

Reλ = − trDss

4
δ ±

√
|c| + Rec

2
, Imλ = ωs +

trKss

4ωs
κ ±

√
|c| − Rec

2
, (38)

with

Rec =
(

µ1(Dss) − µ2(Dss)
4

)2

δ2 −
(

ρ1(Kss) − ρ2(Kss)
4ωs

)2

κ2 − Ω2s2,

Imc = δκ
2trKssDss − trKsstrDss

8ωs
, (39)

where µ1(Dss) and µ2(Dss) are the eigenvalues of the submatrix Dss.
With the variation of the speed Ω the eigenvalues (38) move along the branches of

the hyperbola in the complex plane(
Reλ +

trDss

4
δ

)(
Imλ − ωs − trKss

4ωs
κ

)
= − Imc

2
. (40)

When Imc = 0 the strong modal resonance occurs (Dobson et al., 2001) with the
coupling of eigenvalues at Reλ = − trDss

4 δ and Imλ = ωs + trKss

4ωs
κ. This new double

eigenvalue has only one eigenvector and strongly influences the eigenvalue trajectories
for small values of κ and δ when Imc �= 0 and is known to be a precursor to flutter
instability in hydrodynamics (Jones, 1988) and in electrical circuits (Dobson et al.,
2001). The branch, which crosses the imaginary axis from left to right, is determined
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by the sign of Imc. Assuming Reλ = 0 in equation (40), we find the eigenfrequency of
the mode at the onset of self-excited vibrations

ωcr = ωs + κ
trKsstrDss − trKssDss

2ωstrDss
. (41)

The corresponding value of the rotational speed Ω is found from the equation (35).
As we have shown in the previous section the stiffness variation with the matrix

K = K3 leads to the divergence instability near the crossing (5, 0), see Figures 1(d), (f)
and 3(a), and to the veering of eigenvalue branches in the Campbell diagram near the
crossing (0, 5) as shown in Figure 1(d).

Figure 3 D = D1, K = K3, ν = 0: Numerically calculated eigenvalue branches (black
circles) and their approximations (37) and (39) (red lines) for (a) κ = 0.8 and δ = 0;
(b) κ = 0; δ = 0.2 and (c)–(f) κ = 0.8 and δ = 0.2 (see online version for colours)

Let us consider the two damping matrices

D1 =


−1 2 0 0
2 3 0 0
0 0 0 0
0 0 0 0

, D2 =


−1 0.5 0 3
0.5 3 2 1
0 2 −3 2
3 1 2 4

. (42)

In the absence of the stiffness perturbation (κ = 0), the damping modification with
the matrix D = D1 yields a non-trivial decay rate plot with the bubble of instability
in the vicinity of Ω = 0, Figure 3(b). The magnitude of the positive real part for
the unstable arc of the bubble is of the same order as for the unstable eigenvalues
caused by the stiffness variation with the matrix K = K3 near the crossing (5, 0),
Figure 3(a). Consequently, the indefinite damping submatrixDss is the source of flutter
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instability as dangerous in the subcritical speed range as the stiffness variation is in the
supercritical speed range, in agreement with the results of Kirillov (2008b) obtained
for the systems with two degrees of freedom.

Moreover, numerical computations show that even if the eigenvalue branches
in the subcritical speed range of the Campbell diagram are well-separated by the
stiffness modification P + κK3, the inclusion of dissipation with the indefinite
matrix D=D1 causes flutter instability in the vicinity of the crossing (0, 5),
see Figure 3(c)–(f). The stiffness variation leads to the partial destruction of the bubble
of instability created by the indefinite damping, Figure 3(c). The arc of unstable
eigenvalues, corresponding to the first vibration mode, however, persists. Comparison
of the numerical results with the predictions given by the analytical formulas (38)–(40)
shows a very good qualitative and quantitative agreement visible in Figure 3.

For the matrices K = K3 and D = D1 we find from the equation (36) that
A11 = −48 and hence the conical stability boundary

48κ2 + 700δ2 = 400Ω2, (43)

calculated with the use of the expression (35), is oriented along the Ω-axis as shown
in Figure 2(c). Such a geometry of the stability domain yields flutter instability in the
vicinity of the crossing (0, 5) for nonzero values of the parameters δ and κ, which is
confirmed by the numerical calculations shown in Figure 3.

In the casewhen s = t,σ = −ε, andα = −β, corresponding to the doublets situated
on the Ω-axis, the conical instability domain degenerates into the half-space

κ <
2εsωstrDss

2k2s−1,2sd2s−1,2s − k2s−1,2s−1d2s,2s − k2s,2sd2s−1,2s−1
∆Ω. (44)

In the vicinity of the crossing (5, 0) the formula (44) predicts instability for
Ω > 5 + 0.1κ due to perturbation by the matrices K3 and D1. This agrees with the
results of the numerical calculations shown in Figure 3(c).

Now we modify the damping matrix so that D = D2. Comparing to the matrix
D1 the entry d12 is changed from d12 = 2 in D1 to d12 = 0.5 in D2. In both cases the
submatrix D11 is indefinite but the coefficient A11 = 12 in the latter case contrary to
A11 = −48 in the former. This yields the conical flutter domain oriented along the
δ-axis with the boundary

12κ2 + 400Ω2 = 325δ2, (45)

as shown in Figures 2(a) and 4(a). This example clearly demonstrates how the
relatively small variation of the coefficient d12 qualitatively changes the instability
domain from one with the boundary described by the equation (43) to that with the
boundary described by the equation (45). Therefore, the system which was unstable
for δ = 0.1 and κ = 0.7 when D = D1 becomes stable for the same values of these
parameters when D = D2. The corresponding eigenvalue branches of the first and
second modes have now negative real parts, which is confirmed also numerically in
Figure 4(c) and (d).

The non-trivial submatrices D12 and D22 of the matrix D2 cause the excitation
of the unstable modes in the vicinity of the crossings (1/3, 16/3) and (0, 6),
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see Figure 4(c) and (d). The corresponding flutter instability domains shown in
Figure 4(a) are dihedral-angle-like with the boundaries

(1/3, 16/3) : (24Ω − 8)2 − 295936
675

δ2 = 0; (0, 6) : Ω2 − δ2 = 0. (46)

For δ = 0.1 and κ = 0.7 the matrix D2 selectively inhibits instability of the first two
modes in the vicinity of Ω = 0. Instead, the fourth mode is unstable near Ω = 0
and the third one makes the excursion to the right side of the complex plane near
Ω = 1/3, see Figure 4(c) and (d). Approximation (21) shown in Figure 4 by the red
lines simulates well the behaviour of eigenvalues both qualitatively and quantitatively.

Figure 4 D = D2, K = K3, ν = 0: (a) linear approximation to the flutter domains and
(b)–(d) numerically calculated eigenvalue branches (black circles) and their
approximations (37) and (39) (red lines) for κ = 0.7 and δ = 0.1 (see online version
for colours)

Therefore, the influence of damping on the real parts of the eigenvalues is not
homogeneous with respect to Ω. The smaller the gap between the imaginary parts of
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the eigenvalues in the Campbell diagram the bigger the increment to the real parts
due to development of the imperfect bubbles of instability in the decay rate plot,
Figure 4(c). Numerous examples of such dissipation-induced imperfect bubbles of
instability developed in the supercritical speed range of high-speed propellers and
bladed disks of turbines can be found in Genta (2007). Numerical calculations of
Yang and Hutton (1995) revealed them in the subcritical range for the rotating circular
string passing through the eyelet with friction (see also Kirillov, 2008b). Xiong et al.
(2002) found the same effect for the rotating disk in frictional contact with the
point-wise stationary load system. Due to the ability of damping to create a strong
inhomogeneous increment to the real parts of the eigenvalues, it has to be considered
as a serious reason for the self-excited vibrations in the subcritical speed range.

The relation of the pronounced decay rates to the small spectral gaps is explained
by the conical singularities of the stability boundaries associated with the doublets
in the Campbell diagrams of the unperturbed isotropic rotor. Even for the fixed
structure of the perturbing matrices the geometry of the stability frontiers in the
(Ω, κ, δ)-space is complicated by the different orientation of the cones leading to the
controversial requirements to the choice of the intensities of the perturbations Ω, κ,
and δ (cf. Ouyang, 2008). Sensitivity analysis of the doublets and approximation of
the stability boundaries plays the role of a ‘cartographic plotting’ of the obstacles
for the stabilising eigenvalue assignment due to stiffness and damping modifications.
Possible bifurcations of the stability domains due to modification of the structure of
the perturbing matrices can also be predicted by the sensitivity analysis. In the next
sectionwe study suchobstacles in themost complicated casewhen thenon-conservative
positional forces are taken into account.

6 Modifying the matrices of stiffness, damping, and circulatory forces

In general, sensitivity of a doublet with respect to the perturbation by the matrices of
stiffness, damping, and circulatory forces is described by the formula (21). For brevity
we analyse in this section only the crossings situated on the axis Ω = 0. Substituting
s = t, ε �= σ, and α = β into (21) we find that the perturbed eigenvalues are

Reλ = − trDss

4
δ ±

√
|c| + Rec

2
, Imλ = ωs +

trKss

4ωs
κ ±

√
|c| − Rec

2
, (47)

with
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(

µ1(Dss) −µ2(Dss)
4
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ρ1(Kss) − ρ2(Kss)
4ωs
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4ω2
s

,
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sn2s−1,2s

ωs
− δκ

2trKssDss − trKsstrDss

8ωs
. (48)

In the presence of non-conservative positional forces (ν �= 0), stability conditions,
following from equations (47) and (48) under the requirement Reλ < 0, are
δtrDss > 0 and Bss > 0, where

Bss = (2Ωs(δ2ω2
s(trDss)2 − 4ν2n2

2s−1,2s)

+ δ(2trKssDss − trKsstrDss)κνn2s−1,2s)2
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+ δ2(trDss)2(Assδ
2ω2

s − ν2n2
2s−1,2s(ρ1(Kss) − ρ2(Kss))2)κ2

− δ2(trDss)2(δ2ω2
s(trDss)2 − 4ν2n2

2s−1,2s)(ν
2n2

2s−1,2s − δ2ω2
s detDss).

The coefficient Ass defined in equation (36) we represent in the form

Ass =
((trDss)2 − 16β2

◦)(ρ1(Kss) − ρ2(Kss))2

4
(49)

with

β◦ =
2trKssDss − trKsstrDss

4(ρ1(Kss) − ρ2(Kss))
. (50)

In the assumption that ν = 0 the inequality Bss > 0 is reduced to the second one of
the conditions (37).

For the fixed parameters δ and ν the equation Bss = 0 generically describes either
an ellipse or a hyperbola in the (Ω, κ)-plane, Figure 5(b) and (d). For Ass > 0 and
sufficiently big δ, the domain of subcritical flutter is inside the ellipse Bss = 0, and the
domain of asymptotic stability is outside the ellipse similarly to the system without
non-conservative positional forces, whose stability diagram is shown in Figure 2(a).
With the decrease in δ for the fixed ν the ellipse is rotated around the origin in the
(Ω, κ)-plane and simultaneously it is stretched along one of its main axes. At the
threshold Assδ

2ω2
s = ν2n2

2s−1,2s(ρ1(Kss) − ρ2(Kss))2 the ellipse is transformed into
two parallel lines, which with the further decrease in δ are bent into two branches of
hyperbola Bss = 0. Then, the flutter instability domain lies between the two branches,
Figure 5(b). When δ tends to zero, the hyperbolic branches are shrunk to the union of
the intervals (−∞,−κ◦]

⋃
[κ◦,∞) of the κ-axis, where the critical value

κ◦ =
2νn2s−1,2s

ρ1(Kss) − ρ2(Kss)
, (51)

follows from the conditions Rec = 0 and Imc = 0 implying existence of the double
eigenvalues at the points (Ω = 0, κ = ±κ◦, δ = 0), which are shown as open circles
in Figure 5.

Remarkably, the value (51) of κ◦ obtained from the perturbation formulas (47)
and (48) coincides with the exact one following from the characteristic equation of
the system (6) in the assumption that δ = 0 and Ω = 0 and that the anti-diagonal
subblocks of the perturbing matrices vanish

λ4 + (2ω2
s + κtrKss)λ2 + κ2 detKss + κω2

strKss + ν2n2
2s−1,2s + ω4

s = 0. (52)

Substituting κ = κ◦ into (52) yields the frequency of the corresponding double
eigenvalues ±iω◦

ω◦ =

√
ω2

s + νn2s−1,2s
ρ1(Kss) + ρ2(Kss)
ρ1(Kss) − ρ2(Kss)

. (53)
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Figure 5 Unfolding the conical boundary of subcritical flutter (dashed lines) by the
perturbation νN into a couple of Whitney’s umbrellas with their level curves
depicted for δ > 0 when (a)–(b) Ass > 0 and (c)–(d) Ass < 0

The double eigenvalue iω◦ has the eigenvector u◦ and the associated vector u1 of the
Jordan chain

u◦ =
(

k2s−1,2s−1 − k2s,2s

2k2s−1,2s + ρ1(Kss) − ρ2(Kss)

)
, u1 =

2iω◦(ρ2(Kss) − ρ1(Kss))
νn2s−1,2s

(
1
0

)
,

(54)

which are the solutions to the equations

(−ω2
◦Iss + Pss + κ◦Kss)u◦ = 0, (−ω2

◦Iss + Pss + κ◦Kss)u1 = 2iω◦u◦. (55)

Therefore, in theparameter space the coordinates (0,±κ◦, 0) correspond to exceptional
points (EPs, Kirillov et al., 2005), at which there exist double eigenvalues with the
Jordan chain, Figure 5.

In the vicinity of the EPs the expression Bss = 0 for the stability boundary yields

Ω =
4β◦κ ± trDss

√
κ2 − κ2◦

4κ◦
δ + o(δ). (56)
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Thus, in the (Ω, δ)-plane the domain of asymptotic stability is bounded in the
first-order approximation by the two straight lines (56).When κ goes to±κ0, the slopes
of the both lines β := Ω/δ tend to the value β = ±β◦, where β◦ is defined in (50).
Extracting κ from the equation (56) we find another representation for the stability
boundary near exceptional points

κ = κ◦
4ββ◦ ± trDss

√
β2 − β2◦ + ( trDss

4 )2

4β2◦ − ( trDss

2 )2
� ±κ◦

[
1 + 8

(
β ∓ β◦
trDss

)2
]
, (57)

which has a canonical for the Whitney’s umbrella singularity form Z = X2/Y 2

(Bottema, 1956; Kirillov, 2007a, 2007b).
Therefore, we explicitly demonstrated that the conical boundary of the domain

of subcritical flutter for Ass > 0 is structurally unstable under the perturbation νN.
With the increase of ν the cone opens up and simultaneously the plane δ = 0 foliates
into two sheets intersecting along the branch cuts (±∞,±κ◦] on the κ-axis, which are
shown as thick lines in Figure 5. The new surface has a couple of Whitney’s umbrella
singularities at the exceptional points (0,±κ◦, 0). The domain of asymptotic stability,
which for ν = 0wasadjacent to the conical domainof subcritical flutter is nowwrapped
into the pockets of the two Whitney’s umbrellas, selected by the inequality δtrD > 0.
With the increase in δ the stability boundary gradually tends to the conical surface
with the flutter instability inside it, Figure 5(a).

Inclusion of the non-conservative forces qualitatively changes the stability diagram
in the (Ω, κ)-plane transforming the elliptic flutter domain of Figure 2(a) to a larger
one located between the hyperbolic branches, Figure 5(b). For ν = 0 and δ = 0 the
(Ω, κ)-plane is stable, while for ν �= 0 and δ → 0 the stability domain dramatically
shrinks to the branch cuts (±∞,±κ◦]. Consequently, under small perturbation νN
a point in the (Ω, κ)-plane, which was in the stability domain for ν = 0 can suddenly
find itself in the instability region when ν �= 0, similarly to the scenario described in
the previous section.

ForAss < 0 the conical stability boundary of Figure 2(c) unfolds into two surfaces
with theWhitney’s umbrella singularities at the exceptional points (0,±κ◦, 0) as shown
in Figure 5(c). The local approximations to the surfaces near the singularities are
given by the same equation (56), where β◦ has a value different from the case when
Ass > 0. For ν = 0 and δ �= 0 the stability domain in the (Ω, κ)-plane is inside of the
two hyperbolic regions extended along the Ω-axis, as shown in Figure 2(c). When
ν �= 0 with the decrease of δ the stability domain rotates around the origin until it
is completely reoriented and shrunk into the branch cuts (±∞,±κ◦] extended along
the κ-axis, Figure 5(d). Due to such a reorientation one can again observe sudden
stabilisation/destabilisation at the very same values of Ω and κ when ν is slightly
changed.

Finally, we demonstrate how the obtained knowledge on the geometry of the
instability domain improves the understanding of the perturbed eigenvalue behaviour.
We calculate numerically the eigenvalue branches for the matrices K = K3, D = D1
and N = N1, where

N1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

. (58)
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In this case the crossing (0, 5) of the Campbell diagram is affected by the perturbation.
As in the previous section the constant A11 = −48 so that in the absence of the
non-conservative positional forces the stability boundary is a cone (43) oriented along
the Ω-axis. This leads to the typical instability arc visible in Figure 6(a).

In the absence of damping δ = 0 the gyroscopic system with the potential and
non-conservative positional forces cannot be asymptotically stable in accordance
with the theorem by Lakhadanov (1975). It is unstable almost everywhere in the space
of the parameters and can be only marginally stable on the set of measure zero in the
parameter space. This result is illustrated in Figure 6(b) and (d). In Figure 6(b) the real
parts cross at the origin in the (Ω, Reλ)-plane, because the value of κ = 0.9 exceeds
κ◦ = 0.1 so that with the variation of Ω at κ = 0.9 we intersect the branch cut [κ◦,∞)
in the (Ω, κ)-plane. For δ = 0 the system ismarginally stable at the points of the branch
cut, which is the set of measure zero, and unstable at all other points of the parameter
plane. In Figure 6(b) the real parts do not cross in the (Ω, Reλ)-plane, because the
value of κ = 0.01 is less than κ◦ = 0.1, so that the branch cut is not intersected with
the variation of Ω.

Perturbation formulas for eigenvalues (47) and (48) allow us to plot the real
and imaginary parts of the non-conservative gyroscopic system without damping as
functions of κ and Ω for a given ν �= 0, see Figure 7. Hence, the transition from
the eigenvalue configuration shown in Figure 6(d) to that shown in Figure 6(b) is
just an evolution of the cross-sections of the eigenvalue surfaces of Figure 7 under
variation of the parameter κ. The qualitative changes of the eigenvalue branches due
to this evolution is caused by the passage through the exceptional points at κ = ±κ◦,
where the eigenvalue surfaces haveWhitney’s umbrella singularities. According to the
formulas (47) and (48) the asymptotic behaviour of the real parts of the eigenvalues at
κ = κ◦ is

Reλ = ±1
2

√
2νsn2s−1,2s

ωs
Ω + O(Ω3/2), (59)

in agreementwith the results byYang andHutton (1995) andKirillov (2008b) obtained
for the rotating circular string passing through the eyelet with friction. For κ < κ◦
we have constant real parts in agreement with Figure 6(d)

Reλ = ±ρ1(Kss) − ρ2(Kss)
4ωs

√
κ2◦ − κ2 + O(Ω2), (60)

whereas for κ > κ◦ the real parts linearly depend on Ω

Reλ = ± 2νsn2s−1,2s

(ρ1(Kss) − ρ2(Kss))
√

κ2 − κ2◦
Ω + O(Ω3), (61)

as shown in Figure 6(b). For Ω tending to infinity we find that

Reλ = ±νn2s−1,2s

2ωs
+ O(Ω−2), (62)

which is seen in Figures 6(b), (d) and 7. The singular eigenvalue surface shown
in the right picture of Figure 7 is well-known in the physical literature on wave
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Figure 6 K = K3, D = D1, N = N1: eigenvalue branches calculated for (a) ν = 0, δ = 0.02,
and κ = 0.9; (b) ν = 0.2, δ = 0, and κ = 0.9; (c) ν = 0.2, δ = 0.02, and κ = 0.9;
(d) ν =0.2, δ = 0, and κ = 0.01 and (e) ν = 0.1, δ = 0.04, and κ = 0
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propagation in anisotropic media as the ‘double coffee filter’ (Kirillov et al., 2005).
We notice that eigenvalue surfaces where used in a recent work by Chevillot et al.
(2008) who studied the onset of squeal in an aircraft braking system.

Introduction of damping into the gyroscopic system with non-conservative
positional forces leads to the origination of the zones of the asymptotic stability,
Figure 5(c) and (d). Indeed Figure 6(c) demonstrates that the crossing of the real parts
occurs at the negative values thus creating an interval of asymptotic stability on the
Ω-axis in agreement with Figure 5(c) and (d). For κ = 0 the instability develops in the
vicinity of Ω = 0, see Figure 6(e) in full agreement with the qualitative Figure 5(c) and
(d) as well as with the analysis of a two-dimensional rotor system by Kirillov (2008b).

Figure 7 Real and imaginary parts of the perturbed eigenvalues as functions of κ and Ω
for a given ν �= 0 in the absence of damping (δ = 0) (see online version for colours)

7 Conclusion

Stability of a symmetric rotor in contact with the friction pads is sensitive to the
structural modifications of the latter. From the other hand, the relative simplicity of
the unperturbed symmetric system allows us to develop an efficient sensitivity analysis
of the eigenvalues and the critical values of parameters with respect to the stator
design variations. This reveals the complex geometry of the stability domain which is
determined, however, by a finite number of well known singularities such as conical
points and Whitney’s umbrellas. Therefore, the complex behaviour of eigenvalues
can be efficiently dealt with using the sensitivity analysis developed in the present
work. The results obtained illuminate the perspectives and difficulties for structural
optimisation of the elements of brakes.
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