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Abstract. We consider two-point non-self-adjoint boundary eigenvalue problems for linear matrix differential operators. The
coefficient matrices in the differential expressions and the matrix boundary conditions are assumed to depend analytically
on the complex spectral parameter λ and on the vector of real physical parameters p. We study perturbations of semi-
simple multiple eigenvalues as well as perturbations of non-derogatory eigenvalues under small variations of p. Explicit
formulae describing the bifurcation of the eigenvalues are derived. Application to the problem of excitation of unstable
modes in rotating continua such as spherically symmetric MHD α2-dynamo and circular string demonstrates the efficiency
and applicability of the approach.
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1. Introduction

Non-self-adjoint boundary eigenvalue problems for matrix differential operators describe distributed non-
conservative systems with the coupled modes and appear in structural mechanics, fluid dynamics, mag-
netohydrodynamics, to name a few.

Practical needs for optimization and rational experiment planning in modern applications allow both
the differential expression and the boundary conditions to depend analytically on the spectral parameter
and smoothly on several physical parameters (which can be scalar or distributed) [1–3]. According to the
ideas going back to von Neumann and Wigner [4], in the multiparameter operator families, eigenvalues
with various algebraic and geometric multiplicities can be generic [5,6]. In some applications additional
symmetries yield the existence of spectral meshes [7] in the plane ‘eigenvalue versus parameter’ con-
taining infinite number of nodes with multiple eigenvalues, see, e.g, [8–10] and references therein. As it
has been pointed out already by Rellich [11] sensitivity analysis of multiple eigenvalues is complicated
by their non-differentiability as functions of several parameters. Singularities corresponding to multiple
eigenvalues [5] are related to such important effects as destabilization paradox in near-Hamiltonian and
near-reversible systems [12–19], geometric phase [20], reversals of the geomagnetic field [21,3], emission
of sound by rotating continua interacting with the friction pads [22–24,50] and other phenomena [25].

An increasing number of multiparameter non-self-adjoint boundary eigenvalue problems and the need
for simple constructive estimates of critical parameters and eigenvalues as well as for verification of
numerical codes, require development of applicable methods, allowing one to track relatively easily and
conveniently the changes in simple and multiple eigenvalues and the corresponding eigenvectors due
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to variation of the differential expression and especially due to transition from one type of boundary
conditions to another one without discretization of the original distributed problem, see, e.g., [1–3,9].

A systematical study of bifurcation of eigenvalues of a non-self-adjoint linear operator L0 due to per-
turbation L0 +εL1, where ε is a small parameter, dates back to the 1950s. Apparently, Krein was the first
who derived a formula for the splitting of a double eigenvalue with the Jordan block at the Hamiltonian
1 : 1 resonance (the Krein collision [26]), which was expressed through the generalized eigenvectors of the
double eigenvalue [27]. Vishik and Lyusternik and Lidskii created a perturbation theory for nonsymmet-
ric matrices and non-self-adjoint differential operators allowing one to find the perturbation coefficients
of eigenvalues and eigenfunctions in an explicit form by means of the eigenelements of the unperturbed
operator [28,29]. Classical monographs by Rellich [30], Kato [31], and Baumgärtel [32], mostly focusing
on the self-adjoint case, contain a detailed treatment of eigenvalue problems linearly or quadratically
dependent on the spectral parameter.

Multiparameter perturbation theory for simple and multiple eigenvalues of matrices and generalized
matrix eigenvalue problems initiated by Sun [33,34] was continued, e.g., in recent works [25,35,36].
Gohberg, Lancaster and Rodman [37], Najman [38], Langer and Najman [39], Hryniv and Lancaster [40],
Lancaster, Markus, and Zhou [41], and Kirillov [15] studied perturbation of eigenelements in one- and
multiparameter families of analytic matrix functions.

Recently Kirillov and Seyranian derived explicit formulae for bifurcation of multiple eigenvalues and
eigenvectors of two-point non-self-adjoint boundary eigenvalue problems with scalar differential expres-
sion and boundary conditions, which depend analytically on the spectral parameter and smoothly on a
vector of physical parameters, and applied them to the sensitivity analysis of distributed non-conservative
problems prone to dissipation-induced instabilities [16,17,42,43]. An extension to the case of intermediate
boundary conditions with an application to the problem of the onset of friction-induced oscillations in the
moving beam was considered in [22]. In [7] this technique was applied to the study of MHD α2-dynamo
operator with idealistic (Dirichlet) boundary conditions.

In the following we develop this approach further and consider boundary eigenvalue problems for
linear non-self-adjoint m-th order N × N matrix differential operators on the interval [0, 1] � x. The
coefficient matrices in the differential expression and the matrix boundary conditions are assumed to
depend analytically on the spectral parameter λ and on a vector of real physical parameters p. The
matrix formulation of the boundary conditions is chosen for the convenience of its implementation in
computer algebra systems for an automatic derivation of the adjoint eigenvalue problem and perturbed
eigenvalues and eigenvectors, which is especially helpful when the order of the derivatives in the differ-
ential expression is high [44]. Based on the eigenelements of the unperturbed problem explicit formulae
are derived describing bifurcation of the semi-simple multiple eigenvalues (diabolical points) as well as
non-derogatory eigenvalues (branch points, exceptional points) under small variation of the parameters
in the differential expression and in the boundary conditions. Finally, the general technique is applied to
the investigation of the onset of oscillatory instability in rotating continua.

2. A non-self-adjoint boundary eigenvalue problem for a matrix differential operator

Following [16,17,42,43,45,46] we consider the boundary eigenvalue problem

L(λ,p)u = 0, Uk(λ,p)u = 0, k = 1, . . . ,m, (1)

where u(x) ∈ C
N ⊗ C(m)[0, 1]. The differential expression Lu of the operator is

Lu =
m∑

j=0

lj(x)∂m−j
x u, lj(x) ∈ C

N×N ⊗ C(m−j)[0, 1], det[l0(x)] �= 0, (2)
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and the boundary forms Uku are

Uku =
m−1∑

j=0

Akju(j)
x (x = 0) +

m−1∑

j=0

Bkju(j)
x (x = 1), Akj ,Bkj ∈ C

N×N . (3)

Introducing the block matrix U := [A,B] ∈ C
mN×2mN and the vector

uT :=
(
uT (0),u(1)T

x (0), . . . ,u(m−1)T
x (0),uT (1),u(1)T

x (1), . . . ,u(m−1)T
x (1)

)
∈ C

2mN (4)

the boundary conditions can be compactly rewritten as [16,17]

Uu = [A,B]u = 0, (5)

where A = (Akj)|x=0 ∈ C
mN×mN and B = (Bkj)|x=1 ∈ C

mN×mN . It is assumed that the matrices lj ,
A, and B are analytic functions of the complex spectral parameter λ and of the real vector of physical
parameters p ∈ R

n. For some fixed vector p = p0 the eigenvalue λ0, to which the eigenvector u0 cor-
responds, is a root of the characteristic equation obtained after substitution of the general solution to
equation Lu = 0 into the boundary conditions (5) [45].

Let us introduce a scalar product 〈u,v〉 :=
∫ 1

0
v∗udx, where the asterisk denotes complex-conjugate

transpose (v∗ := vT ) [45]. Taking the scalar product of Lu and a vector-function v and integrating it by
parts yields the Lagrange formula for the case of operator matrices (cf. [16,17,45,46])

Ω(u,v) := 〈Lu,v〉 − 〈u,L†v〉 = v∗Lu, (6)

with the adjoint differential expression [45,46]

L†v :=
m∑

q=0

(−1)m−q∂m−q
x

(
l∗qv
)
, (7)

the vector v

vT :=
(
vT (0),v(1)T

x (0), . . . ,v(m−1)T
x (0),vT (1),v(1)T

x (1), . . . ,v(m−1)T
x (1)

)
∈ C

2mN (8)

and the block matrix L := (lij)

L =
(−L(0) 0

0 L(1)

)
, L(x) =

⎛

⎜⎜⎜⎜⎜⎝

l00 l01 · · · l0m−2 l0m−1

l10 l11 · · · l1m−2 0
...

... . .
. ...

...
lm−20 lm−21 · · · 0 0
lm−10 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎠
, (9)

where the matrices lij are

lij :=
m−1−j∑

k=i

(−1)kMk
ij ∂

k−i
x lm−1−j−k,

Mk
ij :=

⎧
⎨

⎩

k!
(k−i)!i! , i+ j ≤ m− 1 ∩ k ≥ i ≥ 0

0, i+ j > m− 1 ∪ k < i.

(10)

Extend the original matrix U (cf. (5)) to a square matrix U , which is made non-degenerate in a neigh-
borhood of the point p = p0 and the eigenvalue λ = λ0 by an appropriate choice of the auxiliary matrices
Ã(λ,p) and B̃(λ,p)

U = [A,B] ↪→ U :=
(

A B

Ã B̃

)
∈ C

2mN×2mN , Ũ := [Ã, B̃], det(U) �= 0. (11)
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For the adjoint boundary conditions Vv = [C,D]v = 0 a similar process yields

V := [C,D] ↪→ V :=
(

C D

C̃ D̃

)
∈ C

2mN×2mN , Ṽ := [C̃, D̃], det(V) �= 0. (12)

Then, the form Ω(u,v) in (6) can be represented as [45]

Ω(u,v) = (Vv)∗Ũu − (Ṽv)∗Uu, (13)

so that without loss in generality we can assume [16,17]

L = V∗Ũ − Ṽ∗U. (14)

Hence, we obtain the formula for calculation of the matrix V of the adjoint boundary conditions and the
auxiliary matrix Ṽ

[
−Ṽ
V

]∗
= LU−1 =

(−L(0) 0
0 L(1)

)(
A B

Ã B̃

)−1

, (15)

which exactly reproduces and extends the corresponding result of [16,17]. Differentiating the equation
(14) we find

∂r
λL =

r∑

k=0

( r
k

) [(
∂r−k

λ̄
V
)∗
∂k

λŨ −
(
∂r−k

λ̄
Ṽ
)∗
∂k

λU
]
. (16)

3. Perturbation of eigenvalues

Assume that in the neighborhood of the point p = p0 the spectrum of the boundary eigenvalue prob-
lem (1) is discrete. Denote L0=L(λ0,p0) and U0=U(λ0,p0). Let us consider an analytic perturbation
of parameters in the form p = p(ε) where p(0) = p0 and ε is a small real number. Then, as in the
case of analytic matrix functions [15,39–41], the Taylor decomposition of the differential operator matrix
L(λ,p(ε)) and the matrix of the boundary conditions U(λ,p(ε)) are [16,17,42,43]

L (λ,p(ε)) =
∞∑

r,s=0

(λ− λ0)r

r!
εs Lrs, U(λ, ε) =

∞∑

r,s=0

(λ− λ0)r

r!
εsUrs, (17)

with L00 = L0, U00 = U0, and

Lr0 = ∂r
λL, Ur0 = ∂r

λU; Lr1 =
n∑

j=1

ṗj ∂
r
λ∂pj

L, Ur1 =
n∑

j=1

ṗj ∂
r
λ∂pj

U,

where dot denotes differentiation with respect to ε at ε = 0 and partial derivatives are evaluated at
p = p0, λ=λ0. Our aim is to derive explicit expressions for the leading terms in the expansions for
multiple-semisimple and non-derogatory eigenvalues and for the corresponding eigenvectors.

3.1. Semi-simple eigenvalue

Let at the point p = p0 the spectrum contain a semi-simple µ-fold eigenvalue λ0 with µ linearly-indepen-
dent eigenvectors u0(x), u1(x), . . ., uµ−1(x). Then, the perturbed eigenvalue λ(ε) and the eigenvector
u(ε) are represented as Taylor series in ε [28,34,40,41,43]

λ = λ0 + ελ1 + ε2λ2 + · · · , u = b0 + εb1 + ε2b2 + · · · . (18)

For the sake of brevity we do not concern here the existence and convergence of expansions (18) that can
be treated by the methods described, e.g., in [28].
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Substituting expansions (17) and (18) into (1) and collecting the terms with the same powers of ε we
derive the boundary value problems

L0b0 = 0, U0b0 = 0, (19)
L0b1 + (λ1L10 + L01)b0 = 0, U0b1 + (λ1U10 + U01)b0 = 0, (20)

The scalar product of (20) with the eigenvectors vj , j = 0, 1, . . . , µ−1 of the adjoint boundary eigenvalue
problem

L†
0v = 0, V0v = 0 (21)

yields µ equations

〈L0b1,vj〉 = − 〈L01b0,vj〉 − λ1〈L10b0,vj〉. (22)

With the use of the Lagrange formula (6), (14) and the boundary conditions (20) the left hand side of
(22) takes the form

〈L0b1,vj〉 = (Ṽ0vj)∗(U01b0 + λ1U10 b0). (23)

Together (22) and (23) result in the equations

λ1

(
〈L10 b0,vj〉 + (Ṽ0vj)∗U10 b0

)
= −〈L01b0,vj〉 − (Ṽ0vj)∗U01b0. (24)

Assuming in the equations (24) the vector b0(x) as a linear combination

b0(x) = c0u0(x) + c1u1(x) + · · · + cµ−1uµ−1(x), (25)

and taking into account that

b0 = c0u0 + c1u1 + · · · + cµ−1uµ−1, (26)

where cT = (c0, c1, . . . , cµ−1), we arrive at the matrix eigenvalue problem (cf. [41])

− Fc = λ1Gc. (27)

The entries of the µ× µ matrices F and G are defined by the expressions

Fij = 〈L01uj ,vi〉 + v∗
i Ṽ

∗
0U01uj , Gij = 〈L10uj ,vi〉 + v∗

i Ṽ
∗
0 U10 uj . (28)

Therefore, in the first approximation the splitting of the semi-simple eigenvalue due to variation of param-
eters p(ε) is λ = λ0 + ελ1 + o(ε), where the coefficients λ1 are generically µ distinct roots of the µ-th
order polynomial

det(F + λ1G) = 0. (29)

For µ = 1 the formulas (28) and (29) describe perturbation of a simple eigenvalue

λ = λ0 − ε
〈L01u0,v0〉 + v∗

0Ṽ
∗
0U01u0

〈L10u0,v0〉 + v∗
0Ṽ

∗
0 U10 u0

+ o(ε). (30)

The formulas (28), (29), and (30) generalize the corresponding results of the works [34,41,43] to the case
of the multiparameter non-self-adjoint boundary eigenvalue problems for operator matrices.
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3.2. Non-derogatory eigenvalue

Let at the point p = p0 the spectrum contain a µ-fold eigenvalue λ0 with the Keldysh chain of length µ,
consisting of the eigenvector u0(x) and the associated vectors u1(x), . . .,uµ−1(x) that solve the boundary
value problems [45,46]

L0u0 = 0, U0u0 = 0, (31)

L0uj = −
j∑

r=1

1
r!
∂r

λLuj−r, U0uj = −
j∑

r=1

1
r!
∂r

λUuj−r. (32)

Consider vector-functions v0(x),v1(x), . . . ,vµ−1(x). Let us take scalar product of the differential equa-
tion (31) and the vector-function vµ−1(x). For each j = 1, . . . , µ − 2 we take the scalar product of the
equation (32) and the vector-function vµ−1−j(x). Summation of the results yields the expression

µ−1∑

j=0

j∑

r=0

1
r!

〈∂r
λLuj−r,vµ−1−j〉 = 0. (33)

Applying the Lagrange identity (6), (14) and taking into account relation (16), we transform (33) to the
form

µ−1∑

j=0

〈uµ−1−j ,

j∑

r=0

1
r!
∂r

λ̄L
†vj−r〉 +

µ−1∑

k=0

µ−1−k∑

j=0

[
j∑

r=0

(
1
r!
∂r

λ̄Vvj−r

)∗]
∂k

λŨ

k!
uµ−1−j−k = 0. (34)

Equation (34) is satisfied in case when the vector-functions v0(x),v1(x), . . ., vµ−1(x) originate the
Keldysh chain of the adjoint boundary value problem, corresponding to the µ-fold eigenvalue λ̄0 [16,17]

L†
0v0 = 0, V0v0 = 0, (35)

L†
0vj = −

j∑

r=1

1
r!
∂r

λ̄L
†vj−r, V0vj = −

j∑

r=1

1
r!
∂r

λ̄Vvj−r. (36)

Taking the scalar product of Eq. (32) and the vector v0 and employing the expressions (6), (14) we
arrive at the orthogonality conditions

j∑

r=1

1
r!

[
〈∂r

λLuj−r,v0〉 + v∗
0Ṽ

∗
0∂

r
λUuj−r

]
= 0, j = 1, . . . , µ− 1. (37)

Substituting into Eqs. (1) the Newton–Puiseux series for the perturbed eigenvalue λ(ε) and eigenvector
u(ε) [16,17,31,32]

λ = λ0 + λ1ε
1/µ + · · · , u = w0 + w1ε

1/µ + · · · , (38)

where w0 = u0, taking into account expansions (17) and (38) and collecting terms with the same powers
of ε, yields µ− 1 boundary value problems serving for determining the functions wr, r = 1, 2, . . . , µ− 1

L0wr = −
r−1∑

j=0

⎛

⎝
r−j∑

σ=1

1
σ!

Lσ0

∑

|α|σ=r−j

λα1 . . . λασ

⎞

⎠wj , (39)

U0wr = −
r−1∑

j=0

r−j∑

σ=1

⎛

⎝
∑

|α|σ=r−j

λα1 . . . λασ

⎞

⎠ 1
σ!

Uσ0wj , (40)

where |α|σ = α1 + · · · + ασ and α1, . . . , αµ−1 are positive integers. For the existence and convergence of
expansions (38) one can consult the work [28].
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The vector-function wµ(x) is a solution of the boundary value problem

L0wµ = −L01w0 −
µ−1∑

j=0

⎛

⎝
µ−j∑

σ=1

1
σ!

Lσ0

∑

|α|σ=µ−j

λα1 . . . λασ

⎞

⎠wj , (41)

U0wµ = −U01w0 −
µ−1∑

j=0

µ−j∑

σ=1

⎛

⎝
∑

|α|σ=µ−j

λα1 . . . λασ

⎞

⎠ 1
σ!

Uσ0wj . (42)

Comparing Eqs. (41) and (42) with the expressions (32) we find the first µ − 1 functions wr in the
expansions (38)

wr =
r∑

j=1

uj

∑

|α|j=r

λα1 . . . λαj
. (43)

With the vectors (43) we transform Eqs. (41) and (42) into

L0wµ = −L01u0 − λµ
1

µ∑

r=1

1
r!
∂r

λLuµ−r +
µ−1∑

j=1

L0uj

∑

|α|j=µ

λα1 . . . λαj
, (44)

U0wµ = −U1u0 − λµ
1

µ∑

r=1

1
r!
∂r

λUuµ−r +
µ−1∑

j=1

U0uj

∑

|α|j=µ

λα1 . . . λαj
. (45)

Applying the expression following from the Lagrange formula

〈L0wµ,v0〉 = v∗
0Ṽ

∗
0U01u0 + λµ

1

µ∑

r=1

1
r!

v∗
0Ṽ

∗
0Ur0uµ−r

−
µ−1∑

j=1

v∗
0Ṽ

∗
0U0uj

∑

|α|j=µ

λα1 . . . λαj
, (46)

and taking into account the equations for the adjoint Keldysh chain (35) and (36) yields the coeffi-
cient λ1 in (38). Hence, the splitting of the µ-fold non-derogatory eigenvalue λ0 due to perturbation of
the parameters p = p(ε) is described by the following expression, generalizing the results of the works
[16,17,42,43]

λ = λ0 + µ

√√√√−ε 〈L01u0,v0〉 + v∗
0Ṽ

∗
0U01u0∑µ

r=1
1
r! (〈Lr0uµ−r,v0〉 + v∗

0Ṽ
∗
0Ur0uµ−r)

+ o(ε
1
µ ). (47)

For µ = 1, Eq. (47) is reduced to Eq. (30) for a simple eigenvalue.

4. Example 1: a rotating circular string

Consider a circular string of displacement W (ψ, τ), radius r, and mass per unit length ρ that rotates with
the speed γ and passes at ψ = 0 through a massless eyelet supported by the spring with the stiffness K,
as shown in Fig. 1a. Introducing the non-dimensional variables and parameters

t =
τ

r

√
P

ρ
, w =

W

r
, Ω = γr

√
ρ

P
, k =

Kr

P
, ϕ =

ψ

2π
, (48)
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(a) (b)

Fig. 1. A rotating circular string and 30 modes of its spectral mesh

and assuming w(ϕ, t) = u(ϕ) exp(λt) we arrive at the non-self-adjoint boundary eigenvalue problem for
a matrix (N = 2,m = 1) differential operator [9]

Lu := l0∂ϕu + l1u = 0, Uu := [A,B]u = 0, (49)

where

l0=
(

1 0
0 1−Ω2

)
, l1= −

(
0 1

4π2λ2 4πΩλ

)
, A=

(
1 0

2πk
Ω2−1 1

)
, B= −

(
1 0
0 1

)
. (50)

The parameters Ω and k express the speed of rotation and the stiffness coefficient.
With u = C1(1, 2πλ

1−Ω )T exp( 2πϕλ
1−Ω ) + C2(1,− 2πλ

1+Ω )T exp(− 2πϕλ
1+Ω ) assumed as a solution of equation

Lu = 0, the characteristic equation follows from the boundary conditions [A,B]u = 0

k sinh
2πλ

1 − Ω2
− 4λ sin

πλ

i(1−Ω)
sin

πλ

i(1+Ω)
= 0, (51)

and the relation between the coefficients C1 and C2 of the eigenvector u
(
1 − e− 2λπ

Ω−1

)
C1 +

(
1 − e− 2λπ

Ω+1

)
C2 = 0. (52)

For the unconstrained rotating string with k = 0 the eigenvectors v and u of the adjoint problems,
corresponding to purely imaginary eigenvalue λ and λ̄, coincide. The eigenvalues λ±

n = in(1 ± Ω), n ∈ Z,
form the spectral mesh in the plane (Ω, Imλ), Fig. 1b. The lines λε

n = in(1 + εΩ) and λδ
m = im(1 + δΩ),

where ε, δ = ±1, intersect each other at the node (Ωεδ
mn, λ

εδ
mn) with

Ωεδ
mn =

n−m

mδ − nε
, λεδ

mn =
inm(δ − ε)
mδ − nε

, (53)

where the double eigenvalue λεδ
mn has two orthogonal eigenvectors

uε
n =

(
1

−iε2πn
)
e−iε2πnϕ, uδ

m =
(

1
−iδ2πm

)
e−iδ2πmϕ. (54)

Using the perturbation formulas (28) and (29) for semi-simple eigenvalues with the eigenelements (53)
and (54) we find an asymptotic expression for the eigenvalues originated after the splitting of the double
eigenvalues λεδ

nm at the nodes of the spectral mesh in the subcritical region |Ω| < 1 (ε < 0, δ > 0 and
m > n > 0) due to interaction of the rotating string with the external spring

λ = λεδ
nm + i

m− n

2
∆Ω + i

n+m

8πnm
k ± i

√
k2

16π2nm
+
(
m− n

8πmn
k − m+ n

2
∆Ω
)2

. (55)
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(a) (b) (c)

Fig. 2. a Deformation of the spectral mesh of the rotating string interacting with the external spring with k = 2; b approx-
imation to the corresponding tongues of oscillatory instability; c comparing numerically calculated eigenvalue curves (full
lines) with the approximation (60) (dashed lines) for k = 0.1

In the supercritical region |Ω| > 1 (ε < 0, δ > 0 and m > 0, n < 0) we have

λ = λεδ
nm + i

m+ |n|
2

∆Ω + i
|n| −m

8π|n|mk ±
√

k2

16π2|n|m −
( |n| −m

2
∆Ω − m+ |n|

8πm|n| k
)2

. (56)

Therefore, for |Ω| < 1 the spectral mesh collapses into separated curves demonstrating avoided crossings;
for |Ω| > 1 the eigenvalue branches overlap forming the bubbles of instability with eigenvalues having
positive real parts, see Fig. 2a. From (56) a linear approximation follows to the boundary of the domains
of supercritical flutter instability in the plane (Ω, k) (gray resonance tongues in Fig. 2b)

k =
4π|n|m(|n| −m)
(
√|n| ± √

m)2

(
Ω − |n| +m

|n| −m

)
. (57)

The stability boundary consists of exceptional points at which there exist double purely imaginary
eigenvalues with the Keldysh chain. Their approximate locations in the (Ω, Imλ)-plane follow from the
expressions (56) and (57). For the resonance tongue, originated at the diabolical point (Ω = 3, Imλ = 4),
the approximation to the loci of the exceptional points are

Ω± = 3 +
3 ± 2

√
2

8π
k, λ± = i

(
4 +

5 ± 3
√

2
8π

k

)
. (58)

For small values of k the coordinates (58) are very close to that found from the numerical solution of the
characteristic equation (51), as is illustrated by Fig. (2)c.

The double eigenvalue λ+ at Ω = Ω+ has an eigenvector u0 = (u01, u02)T and associated vector
u1 = (u11, u12)T . For a given k the eigenvalue λ+ splits with the variation of Ω in accordance to the
formula (47), which now reads as

λ = λ+ ±
√√√√ (1−Ω+2)

∫ 1

0
v̄02(Ω+u′

02 + 2πλ+u02)dϕ+ 2πkΩ+v̄02(0)u01(0)

−2π(1−Ω+2)
∫ 1

0
v̄02(2πλ+u11 + Ω+u12 + πu01)dϕ

(Ω−Ω+). (59)

With the vectors u0 and u1, and with the left eigenvector v0 = (v01, v02)T calculated for k = 0.1 at the
exceptional point (Ω+, Imλ+), the formula (59) yields

λ = λ+ ±
√

−0.004349(Ω − Ω+). (60)
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In Fig. 2c the dashed lines correspond to approximation (60) and the full lines show the numerical solution
of equation (51) which on this scale is undistinguishable from the approximation (56). The deformation
patterns of the spectral mesh and first-order approximations of the instability tongues obtained by the
perturbation technique are in a good qualitative and quantitative agreement with the results of numerical
calculations of [9].

5. Example 2: MHD α2-dynamo

Consider a non-self-adjoint boundary eigenvalue problem (N = 2,m = 2) appearing in the theory of MHD
α2-dynamo (see [3,7,47,48] and references therein for the history and state of the art of the problem)

Lu := l0∂2
xu + l1∂xu + l2u = 0, Uu := [A,B]u = 0, (61)

with the matrices of the differential expression

l0 =
(

1 0
−α(x) 1

)
, l1 = ∂xl0, l2 =

(
− l(l+1)

x2 − λ α(x)
α(x) l(l+1)

x2 − l(l+1)
x2 − λ

)
, (62)

and of the boundary conditions

A =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0

βl + 1 − β 0 β 0
0 1 0 0

⎞

⎟⎟⎠ , (63)

where it is assumed that α(x) = α0 + γ∆α(x) with
∫ 1

0
∆α(x)dx = 0. For fixed ∆α(x) the differential

expression depends on the parameters α0 and γ, while β interpolates between the idealistic (β = 0) and
physically realistic (β = 1) boundary conditions [7,49].

The matrix V of the boundary conditions and auxiliary matrix Ṽ for the adjoint differential expression
L†v = l∗0∂

2
xv − l∗1∂xv + l∗2v follow from the formula (15) where the 4× 4 matrices Ã, and B̃ are chosen as

Ã =
(

0 I
0 0

)
, B̃ =

(
0 0
0 I

)
. (64)

In the following we assume that l = 0 and interpret β and γ as perturbing parameters. It is known [7]
that for β = 0 and γ = 0 the spectrum of the unperturbed eigenvalue problem (61) forms the spectral
mesh in the plane (α0, λ) shown by the dashed lines in Fig. 3a. The eigenelements of the spectral mesh
are

λε
n = −(πn)2 + εα0πn, λδ

m = −(πm)2 + δα0πm, ε, δ = ±1, (65)

uε
n =

(
1
επn

)
sin(nπr), uδ

m =
(

1
δπm

)
sin(mπr). (66)

The branches (65) intersect and originate a double semi-simple eigenvalue with two linearly independent
eigenvectors (66) at the node (αν

0 , λ
ν
0), where [7]

λν
0 = εδπ2nm, αν

0 = επn+ δπm. (67)

Taking into account that the components of the eigenfunctions of the adjoint problems are related as
v̄2 = u1 and v̄1 = u2, we find from Eqs. (28) and (29) the asymptotic formula for the perturbed eigen-
values, originating after the splitting of the double semi-simple eigenvalues at the nodes of the spectral
mesh

λ = λν
0 − εδπ2mnβ +

π

2
(δm+ εn)∆α0 ± π

2

√
D, (68)
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(a) (b) (c)

Fig. 3. l = 0: a deformation of the spectral mesh for γ = 0 and β ∈ (0, 1); b, c approximation of the resonance tongues for
∆α(x) = cos(4πx) and (white, light gray) λν

0 < 0 or (dark gray) λν
0 > 0

where ∆α0 := α0 − αν
0 , ∆α :=

∫ 1

0
∆α(x) cos((εn− δm)πx)dx, and

D := ((εn− δm)∆α0)
2 +mn

(
(ε+ δ)γ∆α− (−1)n+m(n+m)βπ

)2

−mn ((ε− δ)γ∆α− (−1)n−m(n−m)βπ
)2
. (69)

When γ = 0 and ∆α0 = 0, one of the two simple eigenvalues (68) remains unshifted in the first order
of the perturbation theory with respect to β: λ = λν

0 . The sign of the first-order increment to another
eigenvalue λ = λν

0 − 2λν
0β depends on the sign of λν

0 , which is directly determined by the Krein signature
of the modes involved in the crossing [7]. This is in full agreement with the numerically computed roots
of the characteristic equation derived in [49] for the problem (61) with α(x) = α0 = const and l = 0

(1 − β)η [cos (η) − cos (α0)] + 2βλ sin (η) = 0, (70)

where η(α0, λ) =
√
α2

0 − 4λ, shown in Fig. 3a. Therefore, under variation of the parameter β in the
boundary conditions the eigenvalues remain real. An additional parameter γ is required to create com-
plex eigenvalues. This happens when D < 0 in (68).

The inequality D < 0 defines the inner part of the cone D = 0 in the (α0, β, γ)-space. The part of
the cone corresponding to Reλ > 0 (oscillatory dynamo) is selected by the condition 2λν

0 − εδ2π2mnβ +
π(δm + εn)∆α0 > 0. The conical zones develop according to the resonance selection rules discovered in
[7]. For example, if ∆α(x) = cos(2πkx), k ∈ Z, then

∆α =

1∫

0

cos(2πkx) cos((εn− δm)πx)dx =
{

1/2, 2k = ±(εn− δm)
0, 2k �= ±(εn− δm) (71)

There exist a set of 2|k|−1 cones for λν
0 < 0 (εδ < 0) and a set with countably infinite number of cones

for λν
0 > 0 (εδ > 0). Only the cones of the first set intersect with the plane β = 0. The cross-sections of

the domains of oscillatory dynamo are situated symmetrically with respect to the γ-axis

(α0 ± 2π(n− |k|))2 < γ2

4

[
1 −

(
n− |k|

|k|
)2
]
, n = 1, 2, . . . , |k|. (72)

For k = 2 there are three resonant tongues: 4α2
0 < γ2 and 16 (α0 ± 2π)2 < 3γ2, which are shown white in

Fig. 3b.
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When β �= 0 the tongues (72) in the plane (α0, γ), corresponding to λν
0 < 0, deform into the cross-sec-

tions of the cones bounded by hyperbolic curves (black thick lines in Fig. 3b)

− 4k2(α0 ± 2π(n−|k|))2 + n(2|k|−n)(γ ± 2π(n−|k|)β)2 > n(2|k|−n)4π2β2k2, (73)

with n = 1, 2, . . . , |k|. Since n ≤ |k|, the lines γ = ±2πnβ and γ = ±2π(n − 2|k|)β, bounding the cross-
sections of the 3D cones by the plane α0 = α

(ν)
0 = ±2π(n − |k|), always have the slopes of different

sign, Fig. 3c. This allows decaying oscillatory modes for β = 0 due to variation of γ only. For k = 2 the
approximation (73) is shown light gray in Fig. 3b and c.

In the β �= 0-plane cross-sections of the cones, corresponding to λν
0 > 0, have the form of the ellipses,

shown dark gray in Fig. 3b

4k2 (α0 ± 2π(n+|k|))2 + n(2|k|+n) (γ ± 2π(n+|k|)β)2 < n(2|k|+n)4π2β2k2, (74)

where n = 1, 2, . . .. Inside the ellipses there exist eigenvalues with positive real parts exciting the oscilla-
tory dynamo regime. In the (β �= 0)−plane the ellipses (74) are located inside the strip with boundaries
γ = (α0 ± 2π|k|)β (dashed lines in Fig. 3b), while the hyperbolas (73) lie outside this strip. Hence, the
amplitude γ of the resonant perturbation of the α-profile γ∆α(x) is limited both from below and from
above in agreement with the numerical findings of [47]. Moreover, since in the plane α0 = ±2π(n + |k|)
the boundary lines γ = ±2πnβ and γ = ±2π(n + 2|k|)β have slopes of the same sign, the γ-axis does
not belong to the instability domains, showing that for growing oscillatory modes the parameters β and
γ have to be taken in a prescribed proportion, see Fig. 3c. We note that the analytical results confirm
the numerical simulations of the earlier works [3,47].

6. Conclusion

A perturbative approach to multiparameter non-self-adjoint boundary eigenvalue problems for operator
matrices is developed in the form convenient for implementation in the computer algebra systems for an
automatic calculation of the adjoint boundary conditions and coefficients in the perturbation series for
simple and multiple eigenvalues and their eigenvectors. The approach is aimed at applications requiring
frequent switches from one set of boundary conditions to another. Two studies of the onset of instability
in rotating continua under symmetry-breaking perturbations demonstrate the efficiency of the proposed
technique.
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