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Re-visiting structural optimization of the Ziegler pendulum:

singularities and exact optimal solutions
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Structural optimization of non-conservative systems with respect to stability criteria is a research area with important ap-

plications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of

conservative systems where rigorously proven optimal solutions in buckling problems have been found, for non-conservative

optimization problems only numerically optimized designs were reported. The proof of optimality in the non-conservative

optimization problems is a mathematical challenge related to multiple eigenvalues, singularities on the stability domain, and

non-convexity of the merit functional. We present a study of the optimal mass distribution in a classical Ziegler’s pendulum

where local and global extrema can be found explicitly. In particular, for the undamped case, the two maxima of the critical

flutter load correspond to a vanishing mass either in a joint or at the free end of the pendulum; in the minimum, the ratio

of the masses is equal to the ratio of the stiffness coefficients. The role of the singularities on the stability boundary in the

optimization is highlighted and extension to the damped case as well as to the case of higher degrees of freedom is discussed.
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1 Structural optimization of the Ziegler’s pendulum

Consider the classical Ziegler’s pendulum consisting of two light and rigid rods of equal length l. The pendulum is attached

to a firm basement by a viscoelastic revolute joint with the stiffness coefficient c1 and the damping coefficient d1. Another

viscoelastic revolute joint with the stiffness coefficient c2 and the damping coefficient d2 connects the two rods [1]. At the

second revolute joint and at the free end of the second rod the point masses m1 and m2 are located, respectively. The second

rod is subjected to a tangential follower load P [1].

Small deviations from the vertical equilibrium for the undamped Ziegler’s pendulum are described by the equation Mẍ+
Kx = 0 with the mass and stiffness matrices that have the following form [1]

M = l2
(

m1 +m2 m2

m2 m2

)

, K =

(

c1 + c2 − Pl P l − c2
−c2 c2

)

, (1)

where x = (θ1, θ2)
T is the vector consisting of small angle deviations from the vertical equilibrium position.

Calculating the characteristic equation det(Mλ2 +K) = 0 for the Ziegler’s pendulum without dissipation and using the

Gallina criterion [2] we find a critical surface that separates flutter instability and marginal stability domains

p :=
Pl

c2
= 2 +

1

2

(√

m1

m2

±
√

c1
c2

)2

≥ 2. (2)

The case when c1 = c2 = 1, m1 = 2 and m2 = 1 corresponds to the classical result of Ziegler: p = 7/2±
√
2 [1].

The critical load (2) as a function of the masses p = p(m1,m2) is plotted in Fig. 1(a). It is seen that the stability boundary

has a self-intersection along a ray of the p-axis that starts at the Whitney umbrella singularity with the coordinates (0, 0, 2) in

the (m1,m2, p)-space. Indeed, for small absolute values of m1c2 −m2c1 we can expand the critical load in a series

p = 2 +
(m1c2 −m2c1)

2

8c1c2m2

2

+ O((m1c2 −m2c1)
3), (3)

that gives an approximation to the flutter boundary in the canonical for the Whitney umbrella form Z = X2/Y 2.

According to the inequality (2) the critical load is always not less than p0 = 2. The minimum is reached when the masses

satisfy the constraint m1c2 = m2c1. Note that the equal stiffness coefficients c1 = c2 imply equal masses m1 = m2. This

situation corresponds to a uniformly distributed mass and stiffness in continuous systems such as the Beck’s column [3–6].

Usually, in the structural optimization problems the uniformly distributed stiffness and mass are considered as the initial

design that is a starting point in optimization procedures. The critical load of the optimized structure is conventionally

compared to that of the same structure with the uniform mass and stiffness distributions [3–6].

Since p(m1,m2) is a ruled surface and thus p effectively depends on the mass ratio only, it is convenient to introduce the

azimuth angle α by assuming m1 = cosα and m2 = sinα and to plot the critical load as a function of α. In Fig. 1(b) the
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718 Section 16: Optimization




Fig. 1 Undamped 2-link Ziegler’s pendulum. (a) The critical load p(m1,m2) as a function of masses, forms a self-intersecting surface

with the Whitney umbrella singularity at the point (0, 0, 2) of the (m1,m2, p)-space (the case when c1 = c2 = 1 is shown). (b) The critical

flutter load p(α) as a function of the azimuth angle α indicating the direction in the (m1,m2)-plane. The point A is an absolute minimum

of the flutter load: pA = 2, the point B corresponds to the local maximum: pB = 2 + c1/(2c2) with m1 = 0, and the absolute maximum

corresponds to a point C (not shown) with pC = +∞ and m2 = 0. The point Z corresponds to the Ziegler’s original design: m1/m2 = 2.

curves p = p(α) bound the flutter domain shown in the light gray. When α tends to zero, which corresponds to the vanishing

mass m2, the critical load increases to infinity. When α tends to π

2
and, correspondingly, the mass m1 is vanishing, then

the critical flutter load increases to the value pB = 2 + 1

2

c1

c2
. At the point B in the stability diagram of Fig. 1(b) the flutter

boundary has a vertical tangent, which is a typical phenomenon in non-conservative optimization [7].

To summarize, the popular initial design corresponding to uniformly distributed mass and stiffness turns out to give an

absolute minimum to the critical flutter load of the Ziegler’s pendulum. The critical flutter load attains its local maximum,

pB , for m1 = 0 at the singular cuspidal point B of the stability boundary where the flutter domain has a vertical tangent and

touches the boundary of the divergence domain. Note that in [8] a local extremum of the flutter load for the free-free beam

carrying a point mass was found to be at the cuspidal point on the flutter boundary too. The global maximum of the critical

flutter load for the undamped Ziegler’s pendulum is at infinity when m2 = 0.

The global maximum corresponds to a vanishing mass at the free end of the column which qualitatively is in agreement with

the numerically found optimized designs of the Beck’s column available in the literature [3–6]. Indeed, all known optimized

designs of the Beck’s column are characterized by the vanishing cross-sections at the free end. Moreover, the gradients of the

critical flutter load with respect to the mass or stiffness distribution of the Beck column are large, which is, again, in qualitative

agreement with our stability diagram of Fig. 1(b) . The most interesting is the fact that with the increase of the critical flutter

load the higher and higher modes were reported to be involved into the coupling that indicates the onset of flutter [3–6]. Our

simple model shows that this phenomenon seems to be natural for the optimal design that causes the degeneracy in the mass

matrix that gives rise to the critical frequency that increases without bounds.

The same qualitative picture we observed in the case of an m-link Ziegler pendulum [9, 10]. Since the system is finite-

dimensional and contains the finite number of control parameters with the clear physical meaning, the locations of the singu-

larities corresponding to multiple eigenvalues can easily be found numerically with the high accuracy. In the vicinity of such

points where at least three pure imaginary eigenvalues couple, the question ‘Should low-order models be believed’ [11] makes

sense because here a one more degree of freedom is crucial for the correct solution.
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