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1. Abstract

A non-uniform column moving in space under a tangential end force (as idealization of a flexible missile) is con-
sidered. It is supposed that the column can carry a nonstructural mass (a payload). This nonconservative
(circulatory) system can lose stability by flutter or by divergence under certain conditions. Changing mass and/or
stiffness distribution of the column or nonstructural mass distribution we can influence the critical end force. Two
optimization problems with critical follower load as a design criterion are studied, mass distributions of the col-
umn and payload being taken as control functions.

The problem of optimal displacement of a concentrated mass along the uniform column is also considered. Since
this problem possesses three parameters, stability diagrams in three- and two- parameter spaces are plotted. It is
found that the optimal solution is attained at the singularity of a boundary of the stability domain.

Special attention is paid to singularities arising on the boundaries between stability and instability domains. For
two-parametric linear circulatory systems of general type with finite degrees of freedom we formulate a theorem
where full description of boundaries between stability, flutter and divergence domains is given; typical singulari-
ties of boundaries are listed, and explicit expressions for normals and tangent cones to the boundaries via left and
right eigenvectors and associated vectors of the matrix of a circulatory system are presented.
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3. Problem formulation

Consider a planar motion of a flexible non-uniform column under a tangential end force. It is assumed that the
column carries a distributed payload of a given mass. The mass of the column is given and fixed. The separated
dimensionless differential equation and the boundary conditions describing transverse vibrations of the column are
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where x is a coordinate along the central line of the column, u is a deflection function, primes denote differen-
tiation with respect to x, p is a follower force, w is a natural frequency of the system under the follower force,
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o'(x) is a bending stiffness, m(x) = mco,(x) +mm,}(x) , mm,(x) is a mass of the column per unit length,

1
m,,m(x) is a nonstructural mass per unit length, M, = Iomm,(x)dx=l is a mass of the column, and

1
M= J.om(x)dx is a total mass of the system.

First we consider a column without nonstructural mass, i.e. m(x) = mw,(x) . It is supposed that the column has
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co,(x) between the bending stiffness and the mass

circular cross-sections. This yields the relationship o‘(x) =m

distribution of the column.

Solving eigenvalue problem (1) for the given mass disribution m(x) >0 under different values of parameter

p 20 we can find eigenvalues a)JZ( p) as functions of the load parameter. The column is stable iff all a)Jz are

positive and semi-simple eigenvalues. If one of the eigenvalues a)jg changes the sign at p = pi® and then be-

comes negative, it means that the column loses stability statically (divergence). If two eigenvalues a)?, a),f
j#k mergeat p=pd ie. a)]2 = a),f , and then split to complex-conjugate eigenvalues, it means dynamical
stat

loss of stability (flutter). For the given m(x) critical load p. is defined as min{ pfy", D+ } . Changing mass

distribution we can influence the critical follower load.



We would like to find a mass distribution of the column which maximizes the critical follower force p«, destabi-

lizing the system either by flutter or by divergence. Hence, we formulate an optimization problem
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Consider now the case when a uniform column carries a distributed payload of a given mass. Then the mass and
stiffness distributions of the column in (1) are constant: mm,(x) =1, O'(x) =1. Introducing a parameter

M-M

K T“” , characterizing the part of the payload in the total mass of the system, we can express mass distri-

bution of the system in the form
1
m(x) =l+é,u(x), '[)‘[de,‘:l .

Our aim is to find a nonstructural mass distribution 4(x) maximizing the critical end force

Ds = min{ pfy" s pi""} , assuming that admissible ,u(x) is a bounded function. So, we formulate an optimization

problem as
P+ (,U) - Tg)x,
1
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4. Method of solution and the results obtained

In both problems (2) and (3) optimal solutions are obtained numerically with the use of the gradient projection
method. Eigenvalue problem adjoint to (1) is introduced to derive explicit expressions for gradient functions
showing sensitivity of the critical flutter or divergence loads with respect to stiffness and mass rearrangements. To
compute gradient functions it is necessary to know only solutions of main and adjoint eigenvalue problems at the
critical point ps.

Consider, for example, optimization problem (2). Due to variation of mass m = m(x) + é'm(x) eigenvalues, ei-

genfunctions, and critical load take increments 0@., OUs, Op«. Substituting these increments into (1) yields

i

after simple transformations the relationship p. = jg(x)5m(x)dx between 5m(x) and Jp. . Function g(x) is
0

a gradient function of the critical load p» with respect to variations of mass distribution of the column. Expres-

sions for g(x) are different in the cases p. = p" and p, = pi:
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Here g f(x) is the gradient function of flutter critical load, g d(x) is the gradient function of divergence critical

load, and v, is an eigenfunction of the adjoint eigenvalue problem at the point p. .



To increase current value of the functional p. we choose the variation é’m(x) so that dps > 0. Besides, new
1
mass distribution must satisfy the condition I(m(x) + é'm(x))dx =1, which means that the total mass of the
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column remains constant. On each step of the optimization process the critical load is either p« = p&'® or

Ds = pfy " , and it is necessary to use the appropriate gradient function when constructing an improving variation
of mass distribution. It is easy to show that the variation

om = a(x)(g(x) ~3). 7 = ;[a(x)g(x)dx / ;ja(x)dx, ©

where a(x) is arbitrary nonnegative function, causes monotonous growth of the functional p, if ||a|| <<1, and

satisfies the isoperimetric condition.

Each iteration of the optimization procedure consists of three steps. First for current mass distribution we find
critical load p. and establish the mechanism of instability: flutter or divergence. For that we solve the main and

the adjoint eigenvalue problems for different values of the load parameter p . Then we calculate the appropriate
gradient function gf(x) or gd(x) at the critical load p. according to the expressions (4) or (5), respectively. On

the last step we obtain the variation of the mass distribution by (6) and calculate new mass distribution
m**! = m* + Sy k = 0,12,..

Consider now optimization problem (3). Since feasible control function ,u(x) in (3) is bounded, Pontryagin’s

maximum principle can be applied. It is shown with the use of this principle that the optimal nonstructural mass
distributions belong to the “bang-bang” type and, hence, have discontinuities. Finding an improving variation of
nonstructural mass ,u(x) reduces in this case to solving a linear programming problem.

For stability analysis of the nonconservative problems a variational principle is presented. In combination with
Bubnov-Galerkin method this variational principle is used for discretization of continuous eigenvalue problems.

Solving optimization problem (2) we started with the mass distribution m(x) =1 (uniform column), correspond-
ing to the critical follower load p« =109.69 destabilizing the system by flutter [1], [2]. The obtained mass distri-

bution of the column, corresponding to the critical flutter load p« = 290, is shown in Fig. 1.

Two optimal solutions of problem (3), when the mass of the payload is 10 percent of the mass of the column, dif-
fering only by upper constraint x,, implied on nonstructural mass distribution, are presented in Fig. 2. It can be

seen from Fig. 2a that at low values of 4, optimal payload distribution has four switching points. Higher values
of p,, mean that a payload can be distributed more compactly along the column. Fig. 2b shows that the optimal

solution tends to a Dirac delta-function as upper constraint takes higher values. Thus, a problem of optimal dis-
placement of a concentrated mass along a uniform column ([31, [4]) naturally arises.

If we take y(x) = 5(x - a) , then there are only three parameters in problem (3): critical end force, mass of pay-
load x and its displacement along the beam a . When parameter « is fixed optimization problem reduces to
finding a maximum of the critical load p. ( a) as a function of displacement a of a concentrated mass. Stability

diagram in the plane (a, p) when x =0.2 is shown in Fig. 3. It can be seen that the stability boundary has singu-

larities and the optimal solution in this case is attained at one of the singularities (the cusp). This optimal solution
corresponds to a triple real eigenvalue with the Jordan chain of dimension 3. In section 5 we will show that such
singularity is typical for two-parametric circulatory systems.
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Figure 1. Figure 2.
Mass distribution for problem (2) Two optimal mass distributions for problem (3)

5. Singularities arising on stability boundaries in two-parametric circulatory systems

Some difficulties appear when we use gradient method for optimization of nonconservative systems. Note that the
critical load functional defines the boundary between stable and unstable domains in the parameter space. During
iteration process we must be able to judge about optimality of the solution obtained using the necessary optimality
conditions. To obtain necessary optimality conditions and, if iteration process converges to a non-optimal solu-
tion, to construct an improving variation we must know the geometric properties of stability boundaries. In the
literature on nonconservative stability problems there are many examples, including the example of section 4,
showing that optimal solutions very often are attained at the singular points of stability boundaries. Thus, we need
to study singularities of the boundary between stability and instability domains.

We consider two-parametric linear circulatory systems of general type with finite degrees of freedom. The case of
finite degrees of freedom is important because of numerical solution needs discretization of continuous problems.
Equation of motion of a linear autonomous system with nonconservative positional forces is

Mg+Cqg=0, )

where M is a symmetric real positive definite 7 x m matrix, C is a nonsymmetric real matrix of the same order,
and g is areal vector of generalized coordinates of dimension m . Dots mean differentiation with respect to time

t . Using transformation q=ue” we obtain an eigenvalue problem Cu+ VEMu=0, u being an eigenvector.

Introducing notation A=M7'C, A= -v?, we obtain an eigenvalue problem for the matrix operator 4

Au=Au. (®)
It is easy to see that in terms of A system (7) is stable iff all A are positive and semi-simple eigenvalues; if all
eigenvalues A are real and some of them negative system (7) is statically unstable (divergence). And if at least
one eigenvalue A is complex it means flutter instability. Since the matrices M , C, and therefore the matrix A

T
are assumed to be smoothly dependent on a vector of real parameters p = ( Dis pz) , this criterion subdivides the

plane of parameters into stability, flutter and divergence domains.
The main result on singularities of boundaries of stability and instability domains can be formulated as follows:

THEOREM  In generic case boundaries between stability, flutter, and divergence domains are smooth curves

corresponding either to double real eigenvalues (az) or to simple zero eigenvalues (a = O);

at some points of the boundaries singularities (azﬂz) s (a3) , (azﬂ(ﬂ = O)) , (a2 (a = 0))
can appear, Fig 4.

Here (azﬂz) means two Jordan blocks of second order of the matrix 4 with real eigenvalues @ and £, respec-

tively; (a3) means Jordan block of third order with a real eigenvalue « ; and (azﬂ(ﬂ= 0)) denotes Jordan

block of second order with a real eigenvalue @ and simple zero eigenvalue £ =0. This result is obtained with
the use of bifurcation diagrams of families of real matrices, see Arnold [5] and Galin [6].

To investigate local geometric properties of boundaries we analyse bifurcations ¢f eigenvalues on a boundary
between different domains due to variation of parameters. This method is based on the perturbation theory of ei-
genvalues of nonsymmetric matrices depending on parameters, developed by Vishik & Lyusternik [7] and Seyra-
nian {8].



Taking a variation of the vector of parameters p=p,+¢€e+ &’d, where £>0 is a small number, e and d
are real vectors of the variation of dimension 2, the variation of the matrix A results:

Alpy +£e+8%d)= A, +8 A +5%A, +... ©)
The matrices Ay, A, A, are described by the relations
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Due to the variation of the vector p an eigenvalue A and an eigenvector u take increments. According to [7],

(10)

these increments can be expressed as series of integer or fractional powers of &, depending on Jordan structure
corresponding to the eigenvalue A;. In the case of a Jordan block expansions for eigenvalues and eigenvectors

contain terms with fractional powers &7 ", j=0,1,2,...,where [ islength of Jordan chain.

Consider, for example, the case of a double real eigenvalue A, with length of Jordan chain equal to 2. This means
that at the point p = p, , belonging to a curve a’, there exist an eigenvector 1, and an associated vector u;,
corresponding to A, and governed by equations
Agty = Aoy,
Aguy = Aguy +uy. (11)
For the adjoint eigenvalue problem we have
VOT Ay = ’10"0T ,
v A, =Ay] +v; . (12)
According to [7] expansions for perturbed eigenvalue and eigenvector are

A=dg+eP 0 +eiy +& Ay+...
u=uy+&"w, +ew, +w,+... (13)

Substituting (13) and (9) into (8) with the use of (11), (12), and normality condition vg u, =1 we obtain the ex-
pression for determining A,

Al=viAu,. (14)
. . . . . . T . .
If the right hand side of (14) is not zero, it yields two different nonzero roots A, = i\[vo A,u, . Using expression

(10) for the matrix A, , equation (14) can be rewritten in the form, see Seyranian [8]
2 .
Ai= (f,,e)+z(f2,e>.
Here (a,b) = Z:z lasbs denotes inner product of vectors a, b € R? inthe parameter space. Components of the
vectors f; and f, are defined by

s :LS T aA
L +ifs = v, op uy, s=12. -
Hence, bifurcation of a double real eigenvalue A, with Jordan chain of second order is described by the expres-

A=24, i1’<f1,6>£+0(8) .

It is easy to see that if A, >0 and remaining eigenvalues are simple and positive, then the curve a? is the

sion

boundary between stability and flutter domains, and the vector f; is the normal vector to this boundary lying in
the stability domain. If A4, <O then the curve a’ is the boundary between divergence and flutter domains. Note
that the normal vector is determined through the right and left eigenvectors, corresponding to A, and first de-
rivatives of the matrix A with respect to parameters. By the same way we find that the curve (a = 0) is the

boundary between stability and divergence domains.

For the following presentation we need to introduce a concept of tangent cone, see Levantovsky [9]. Tangent cone
to a set Z at its boundary point is a set of direction vectors of the curves starting at this point and lying in the set
Z. A tangent cone is nondegenerate, if it cuts out on a sphere a set of nonzero measure. Otherwise, the cone is
called degenerate.



Using the perturbation technique we can find tangent cones at the singular points, listed in the Theorem. At the
points a2ﬁ2 and o’ ,B(ﬂ = 0) tangent cones to stability or divergence boundaries are nondegenerate:

a’p’: K, ={e eR%: <f1",e>>0ﬂ<flb,e> >0 }
azﬂ(,B=0): K, ={e: <fl,e>>Oﬂ<g1,e>>0}.

This means that the boundaries have discontinuities of the slope at these points. At the points a® and az(a = 0)

boundaries possess cusps, and corresponding tangent cones are degenerate:
a’: K, ={e: <ql,e>=Oﬂ<rpe>>0},
a*(a=0): K = {e: <f1,e) =0N <h,,e> < 0} .

All the vectors f,, g, g, 1, h, are determined by the right and left eigenvectors and associated vectors and by

first derivatives of the matrix A with respect to parameters. In Fig. 4 a hypothetical division of the plane of pa-
rameters to stability, flutter, and divergence domains is presented where all types of singularities mentioned above

are shown.
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