
 

1028

 

Doklady Physics, Vol. 49, No. 4, 2004, pp. 239–245. Translated from Doklady Akademii Nauk, Vol. 395, No. 5, 2004, pp. 614–620.
Original Russian Text Copyright © 2004 by Kirillov.

                                                                                                                                                           

MECHANICS
Destabilization Paradox
O. N. Kirillov

Presented by Academician V.F. Zhuravlev December 4, 2003

Received December 10, 2003
In 1952, analyzing the stability of a two-link pendu-
lum loaded by a follower force, H. Ziegler [1] surpris-
ingly concluded that the critical force at which a non-
conservative system with negligibly low dissipation
lost stability was much weaker than that in a system
where dissipation was absent from the very beginning.
This phenomenon, called the destabilization paradox,
was later found in many mechanical and physical sys-
tems [2–4]. Despite numerous works, problems gener-
ated by the destabilization paradox have not yet been
generally solved, although they are of the most theoret-
ical interest according to Bolotin [2]. In this work, a
theory is developed to both qualitatively and quantita-
tively explain the paradoxical behavior of general non-
conservative systems under the action of weak dissipa-
tive and gyroscopic forces. The problem of the stability
of the Reut–Sugiyama pendulum is analyzed as an
example.

1. Let us consider a linear autonomous nonconser-
vative mechanical system described by the equation

(1)

where M, D, and A are the real m × m matrices specify-
ing the inertial, dissipative along with gyroscopic, and
nonconservative position forces, respectively; y is the
generalized coordinate vector; and the dots stand for
differentiation with respect to time t. The matrix D is a
smooth function of the parameter vector k = (k1, k2, …,
kn – 1), D(0) = 0, the matrix A is a smooth function of the
scalar load parameter q ≥ 0, and the matrix M is para-
metrically independent.

Seeking a solution of Eq. (1) in the form y =
uexp(λt), we arrive at the generalized eigenvalue
problem

(2)

where u is the eigenvector and λ is the eigenvalue. A
nonconservative system without gyroscopic and dissi-
pative forces (k = 0), which is described by the equation

(3)

Mẏ̇ D k( )ẏ A q( )y++ 0,=

λ2M λD k( ) A q( )++( )u 0,=

Mẏ̇ A q( )y+ 0=
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is called the circulatory system [1–4]. The spectrum of
the circulatory system is mirror symmetric; i.e., if λ is
an eigenvalue of the linear operator λ2M + A(q), then

−λ, , and , where the bar stands for complex con-
jugation, are also eigenvalues. Therefore, the circula-
tory system is stable in the Lyapunov sense if all its
eigenvalues λ are imaginary and semisimple [5].

Let the circulatory system be stable for q = 0. When
the load parameter increases and reaches a certain crit-
ical value q = q0 , two simple imaginary eigenvalues can
merge into a double eigenvalue iω0 with the Jordan
chain of a length of 2. With further increase in the load,
the double eigenvalue generally splits into a pair of
complex eigenvalues; one of them has a positive real
part, which means vibration instability (flutter, Fig. 1a).
Thus, the range 0 ≤ q < q0 belongs to the stability region
of the unperturbed system described by Eq. (3) [5].

Perturbation of the circulatory system by weak dissi-
pative and gyroscopic forces (k ≠ 0) breaks the coupling
between the eigenvalues and, when the load parameter
reaches a certain critical value q = qcr(k1, k2, ..., kn – 1),
leads to the displacement of one of the eigenvalues to
the right-hand side of the complex plane without the
formation and further bifurcation of the double eigen-

value (Fig. 1a). Moreover, if k = ε , where  is the
fixed vector and ε  0,

(4)

This inequality expresses the destabilization paradox
first pointed out in [1]: the critical load can abruptly
decrease when infinitely weak gyroscopic and dissipa-
tive forces are taken into account. More recently, for
various mechanical systems, it was shown that the lim-
iting critical load  depends on the choice of the vec-

tor  [2–4]. In particular, changing the relation
between the parameters k1, k2, …, kn – 1, one can avoid a
decrease in the critical load and thereby destabilization
(Bolotin effect [2]). For the two-dimensional Ziegler pen-
dulum with two dissipation parameters, Seyranian [7]
found a region on the parameter plane where a noncon-
servative system perturbed by weak dissipative forces
was asymptotically stable and qcr(k) > q0 .

λ λ–

k̃ k̃

q̃cr qcr εk̃( ) q0.≤
ε 0→
lim≡

q̃cr

k̃
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Fig. 1. Trajectories of the eigenvalues of the (thin lines) unperturbed circulatory system and (thick lines) system with weak velocity-
dependent forces for (a) d ≠ 0 and (b) d = 0.
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In this work, for the general linear nonconservative
system described by Eq. (1), an explicit approximation
is found for the function qcr(k), which makes it possible
to determine both the jump of the critical load and the
asymptotic-stability region. In addition, explicit
asymptotic expressions are obtained for the description
of the trajectories of eigenvalues and their decomposi-
tion into independent curves under perturbations of the
circulatory system by weak dissipative and gyroscopic
forces.

2. Let us consider the point p0 = (0, …, 0, q0) in the
n-dimensional space of the parameters k1, k2, …, kn – 1,
and q of the system described by Eq. (1). It is assumed
that ±iω0 , where ω0 > 0, are the double eigenvalues of
the operator A(q0) + λ2M with the Jordan chain of a
length of 2 and the remaining eigenvalues ±iω0, s, where
ω0, s > 0 and s = 1, 2, …, m – 2, are imaginary and sim-
ple. The nonconservative system corresponding to
k = 0 and q = q0 is a circulatory system, and the point p0
belongs to the boundary of the stability region.

Eigenvectors u0 and v0 , as well as associated vectors
u1 and v1 , corresponding to the double eigenvalue iω0
satisfy the equations

(5)

(6)

The vectors u0, v0 and u1, v1 are taken to be real and
imaginary, respectively, so that

(7)

A q0( ) ω0
2M–( )u0 0,=

A q0( ) ω0
2M–( )u1 2iω0Mu0,–=

v0
T A q0( ) ω0

2M–( ) 0,=

v1
T A q0( ) ω0

2M–( ) 2iω0v0
TM.–=

2iω0v0
TMu1 1,=

2iω0v1
TMu1 v1

TMu0 v0
TMu1+ + 0.=
Let us analyze the stability of system (1) under the
linear perturbation of the parameter vector p = (k, q):

(8)

where prime means the derivative with respect to ε at
ε = 0. The perturbed double eigenvalue is generally
expanded into the Newton–Puiseux series

, (9)

where the coefficients λ1 and λ2 are determined from
the equations [8]

(10)

Here, angular brackets mean the scalar product of the
vector k' = ( , , ..., ) and real vectors f and h
with the components

(11)

and the real values  and  are given by the expres-
sions

(12)

Thus, from Eqs. (8)–(10), we obtain [8]

(13)

If the radicand is nonzero, this equation describes
the splitting of the double eigenvalue iω0 when varying

p ε( ) *0 εp ', ε 0,≥+=

λ iω0 ε1/2λ1 ελ2 …+ + +=

λ1
2 iω0 f k ',〈 〉– f̃ q ',–=

2λ2 f ω0h k ',–〈 〉– ih̃q '.–=

k1' k2' kn 1–'

f r v0
T∂D
∂kr

-------u0, ihr v1
T∂D
∂kr

-------u0 v0
T∂D
∂kr

-------u1,+= =

r 1 2 … n 1,–, , ,=

f̃ h̃

f̃ v0
T∂A

∂q
-------u0, ih̃ v1

T∂A
∂q
-------u0 v0

T∂A
∂q
-------u1.+= =

λ iω0 iω0 f k,〈 〉– f̃ q q0–( )–±=

–
1
2
--- f ω0h– k,〈 〉 ih̃ q q0–( )+( ) ….+
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the parameters k and q. In this case, iω0 splits generally
into two simple eigenvalues, one of which has a posi-
tive real part (instability). If 〈f, k〉 = 0, the square root in

Eq. (13) is imaginary for (q – q0) > 0, and the condi-
tion 〈h, k〉  < 0 is necessary for asymptotic stability. In
this case, under sufficiently small perturbations (8), the
eigenvalue iω0 (and –iω0) splits into two simple eigen-
values with negative real parts.

In addition, the stability of system (1) is determined
by the behavior of 2m – 4 simple eigenvalues ±iω0, s.
Let us take the real right u0, s and left v0, s eigenvectors
that correspond to the eigenvalues iω0, s and satisfy the
normalization conditions

(14)

The increment of the eigenvalues ±iω0, s under pertur-
bations (8) has the form

(15)

where  and the components of the real vector gs are
given by the expressions

(16)

If 〈gs, k〉  > 0, then Reλ < 0. Thus, under the conditions

(17)

system (1) is asymptotically stable for sufficiently
small linear variations of the parameters k and q.

3. According to relations (17), the set of directions
from the point p0 = (0, q0) to the asymptotic-stability
region has the dimension n – 1 in the n-dimensional
parameter space. It is known that the dimension of the
asymptotic-stability region coincides with the dimen-
sion of the parameter space [9]. This means that the
asymptotic-stability region can be reached only along
the curve touching the plane 〈f, k〉  = 0 at the point p0 .
To gain more precise information about the shape of the
asymptotic-stability region near the point p0 , let us con-
sider smooth variation of the parameter vector

(18)

under the assumption that

(19)

The curve specified by Eqs. (18) and (19) is orthogonal
to the q axis in the parameter space, because q' ≡ 0.

f̃

2ω0 s, v0 s,
T Mu0 s, 1.=

λ iω0 s, ig̃s q q0–( ) ω0 s, gs k,〈 〉– …,++−±=

s 1 2 … m 2,–, , ,=

g̃s

g̃s v0 s,
T ∂A

∂q
-------u0 s, , gs r, v0 s,

T ∂D
∂kr

-------u0 s, ,= =

r 1 2 … n 1.–, , ,=

f k,〈 〉 0, h k,〈 〉 0, f̃ q q0–( ) 0,><=

gs k,〈 〉 0, s> 1 2 … m 2,–, , ,=

p ε( ) 0

q0

ε k '

0

ε2

2
---- k ''

q ''
o ε2( )++ +=

f k ',〈 〉 0.=
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The coefficient λ1 of expansion (9) that is deter-
mined by the first of Eqs. (10) vanishes along the curve
specified by Eqs. (18) and (19). Therefore, the double
eigenvalue splits linearly with respect to ε:

(20)

where the coefficient λ2 is the root of the quadratic
equation [8]

(21)

Here, the vectors f, h and quantities ,  are deter-
mined by Eqs. (11) and (12), respectively; the real
matrix H has the components

(22)

and the real matrix G is determined by the expression

(23)

where S0 is the operator inverse to the operator

A(q0) − M.

In view of Eqs. (18) and (19), which explicitly spec-
ify the curve p(ε), and expansion (20), Eq. (21) is rep-
resented in the form

(24)

where ∆λ = λ – iω0. According to the Bilharz crite-
rion [10], all roots of polynomial (24) with complex
coefficients have negative real parts iff

(25)

(26)

Without loss of generality, we take  < 0. Then, the
critical parameter q above which instability (flutter)
occurs is given by the expression

(27)

λ iω0 λ2ε …,+ +=

2λ2
2 2λ2ω0 h k ',〈 〉– f̃ q '' 2ω0

2 Gk ' k ',〈 〉+( )+

+ iω0 f k '',〈 〉 2 Hk ' k ',〈 〉+( ) 0.=

f̃ h̃

Hrs
1
2
---v0

T ∂2D
∂kr∂ks

---------------u0, r s, 1 2 … n 1,–, , ,= =

Gk ' k ',〈 〉 kr' v0
T∂D
∂kr

-------S0 ks'
∂D
∂ks

-------u0

s 1=

n 1–

∑ 
 
 

,
r 1=

n 1–

∑=

ω0
2

∆λ2 ∆λω0 h k,〈 〉– f̃ q q0–( ) ω0
2 Gk k,〈 〉+ +

+ iω0 f k,〈 〉 Hk k,〈 〉+( ) 0,=

f̃ q q0–( ) f k,〈 〉 Hk k,〈 〉+( )2

h k,〈 〉 2
----------------------------------------------- ω0

2 Gk k,〈 〉 ,–>

h k,〈 〉 0.<

f̃

qcr k( ) q0
f k,〈 〉 Hk k,〈 〉+( )2

f̃ h k,〈 〉 2
-----------------------------------------------

ω0
2

f̃
------ Gk k,〈 〉 .–+=
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Considering the case where

(28)

i.e., all simple eigenvalues ±iω0, s are displaced to the
left-hand side of the complex plane, we conclude that
the surface qcr(k) approximated by Eq. (27) is the
boundary of the asymptotic-stability region. According
to Eq. (27), it is easy to see that the limit of qcr as a func-
tion of k1, k2, …, kn – 1 does not exist at the point k = 0
due to singularity. This conclusion was first drawn
in [6, 7], where the stability of a gyroscope in a gimbal
and Ziegler pendulum was analyzed.

Setting k = ε  in Eq. (27), we find the jump of the

critical load as a function of :

(29)

The limit of qcr along the  direction exists if 〈h, 〉  ≠
0, because the numerator and denominator in Eq. (29)

are homogeneous. When 〈f, 〉  = 0, the jump of the crit-
ical load vanishes. This condition provides the ratio

 = , where i, j = 1 and 2, of the components k1 and

k2 of the two-dimensional vector k = (k1, k2) for which
the circulatory system is not destabilized by weak dis-
sipative and gyroscopic forces. The dependence of the
critical load on the ratio of the dissipation parameters
was first found by Bolotin [2, 3]. For two-dimensional

system (1) with the matrix D(k) = k , where  is a
fixed matrix, expression (29) describing the jump of the
critical load takes the form

where A0 = A(q0), A1 = , and the derivative is taken

at q = q0 .
The isolines of function (27) are the boundaries of

the asymptotic-stability region in the space of the
parameters k = (k1, k2, ..., kn – 1). The isolines qcr = q0 ,
where q0 is the critical parameter q for the unperturbed
circulatory system, are given by the expression

(30)

For the two-dimensional parameter vector k =
(k1, k2), Eq. (27) describes a surface known as the Whit-

k: q qcr k( )<{ } k: h k,〈 〉 0 gs k,〈 〉 0,>,<{⊂
s 1 2 … m 2–, , ,= } ,

k̃

k̃

∆q q0 qcr εk̃( )
ε 0→
lim–≡ 1

f̃
--- f k̃,〈 〉 2

f k̃,〈 〉 2
----------------*–=

k̃ k̃

k̃

ki

k j

----
f j

f i

-----–

D̃ D̃

∆q
2 trA0( )2–

2trA0A1 trA0trA1–
-----------------------------------------------

2trA0D̃ trA0trD̃–

2trA0D̃ 3trA0trD̃–
----------------------------------------------

 
 
 

2

,=

dA
dq
-------

f k,〈 〉 ω 0 h k,〈 〉 Gk k,〈 〉 Hk k,〈 〉 .–±=
ney umbrella [9]. Expressing the parameter k1 in terms
of k2 from Eq. (30) and vice versa, we obtain an approx-
imation of the boundary of the asymptotic-stability
region on the (k1, k2) plane for qcr = q0in the form

(31)

where the matrices H and G with the respective compo-
nents Hrs and Grs, where r, s = 1 and 2, are given by
expressions (22) and (23), respectively. It follows from
Eq. (31) that the asymptotic-stability region has a sin-
gularity—turning point—at the origin. The asymptotic
expression for the stabilization-region boundary in
form (31) was first found in [7] for the Ziegler pendu-
lum with two independent dissipation parameters.

Substituting ∆λ = Reλ + i(Imλ – ω0) into Eq. (24)
and separating the real and imaginary parts, we arrive
at the following equations describing the displacement
of the eigenvalues λ on the complex plane under small
variations of the parameters q and k:

(32)

(33)

(34)

where a = –ω0〈h, k〉 , c = (q – q0) + 〈Gk, k〉 , and
d = ω0(〈f, k〉  + 〈Hk, k〉). According to Eqs. (32)–(34)
for k = 0, when varying the parameter q, two simple
imaginary eigenvalues merge at q = q0 and then split in
the direction perpendicular to the imaginary axis with
the formation of a pair of simple complex eigenvalues
(flutter). Such a behavior of the eigenvalues is known
as strong interaction and is typical for the circulatory
system [5]. The trajectories of the eigenvalues of the
circulatory system when varying the parameter q are

shown in Fig. 1 by the thin lines (for  < 0).
For k ≠ 0 and d ≠ 0, dissipative and gyroscopic

forces destroy strong interaction by displacing and
splitting the trajectories of the eigenvalues of the circu-

ki = 
fj

fi
---kj–

fTH*f ω0 hi fj h j fi–( ) fTG*f±
f i

3
-------------------------------------------------------------------------kj

2– o kj
2( ),+

i j, 1 2,,=

H*
H22 H12–

H21– H11

, G*
G22 G12–

G21– G11

,= =

Im λ ω0– Reλ– a
2
---– 

  2

– Im λ ω0– Reλ a
2
---+ + 

  2

2d ,=

Reλ a
2
---+ 

  4

c
a2

4
-----– 

  Reλ a
2
---+ 

  2

+
d2

4
-----,=

Im λ ω0–( )4
c

a2

4
-----– 

  Im λ ω0–( )2
–

d2

4
-----,=

f̃ ω0
2

f̃
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latory system, as is shown in Fig. 1a. This effect, which
was previously known only qualitatively [2–4], is ana-
lytically described by Eqs. (32)–(34). When varying the
parameter q at a fixed vector k, the eigenvalues are dis-
placed along the branches of hyperbola (32) on the
complex plane. This hyperbola has two asymptotes,

Reλ =  and Imλ = ω0 . If a > 0, one of the two eigen-

values lies on the left-hand side of the complex plane,
and the second eigenvalue is displaced to the right-hand
side at the critical load qcr determined by Eq. (27).

For d = 0, the strong interaction between eigenval-
ues holds despite the introduction of weak velocity-
dependent forces (k ≠ 0). According to Eq. (33), the

complex eigenvalues with Reλ =  are strongly cou-

pled with each other for q equal to

. (35)

When varying the parameter q, the double eigenvalue

λ∗  =  + iω0 splits into two simple complex-conju-

gated eigenvalues, one of which intersects the imagi-
nary axis at the critical value given by Eq. (27), as is
shown in Fig. 1b for a > 0. In this case, weak forces
dependent on the generalized velocities stabilize the
circulatory system when 〈Gk, k〉  > 0.

4. Let us consider the Reut–Sugiyama pendulum [11]
consisting of two rigid rods that have the same length l
and equal unit-length mass m. The rods are joined
together by a hinge. A plane rigid massless plate is fixed
in the free end of one rod perpendicularly to it. The pen-
dulum is subject to the force Q always directed along
the vertical axis that is the equilibrium position of the
pendulum (Fig. 2). This system was realized under lab-
oratory conditions, and the force Q was generated by
the pressure of an air jet [11]. Viscoelastic hinges of the
pendulum are characterized by the same rigidity Ò and
viscosity b. The external damping coefficient due to air
resistance is denoted as e. In the dimensionless quantities

(36)

the equation of small oscillations of the pendulum has
the form [11]

(37)

a
2
---–

a
2
---–

q* q0 ω0
2 h k,〈 〉 2 4 Gk k,〈 〉–

4 f̃
----------------------------------------------+=

a
2
---–

q = 
Ql
c

------, γ = 
b

l cml
---------------, κ  = 

el2

cml
-------------, τ  = 

t
l
- c

ml
------,

ẏ̇ Dẏ Ay+ + 0,=
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where

(38)

In the absence of dissipation (γ = κ = 0), the equilibrium
position of the pendulum is stable if 0 ≤ q < q0 . Under

the load q0 =  . 2.54170 [11], there are a pair

of double eigenvalues ±iω0 , where ω0 = 61/27–1/4, corre-
sponding to one eigenvector.

The Routh–Hurwitz conditions applied to the sys-
tem of Eqs. (37) and (38) provides the equation for the
boundary of the asymptotic-stability region for qcr = q0
in the form

(39)

The asymptotic-stability region with the boundary
given by Eq. (39) is shaded in Fig. 3. It approaches the
origin as a narrow tongue along the vertical axis, which
illustrates the stabilizing and destabilizing effects of low
external κ and internal γ dampings, respectively [3, 4].
Indeed, Fig. 3 shows that, for any infinitely small γ
value, there is a κ value such that the perturbed noncon-
servative system is stable with qcr(γ, κ) > q0 .

Let us use the above results to approximate the
asymptotic-stability region near the origin as well as to
describe the behavior of the eigenvalues. Solving prob-

D
1
7
--- 7κ 42γ+ 30γ–

84γ– 7κ 66γ+
,=
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1
7
--- 42 30q–     30–
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Fig. 2. Reut–Sugiyama pendulum.
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lems given by Eqs. (5) and (6) for q0 =  and

ω0 = 61/27–1/4 with the matrices D and A specified by
Eqs. (38), we obtain the Jordan vector chains for the
double eigenvalue iω0:

(40)

The substitution of these vectors into expressions (11),
(12), (22), and (23) yields

(41)

In view of expressions (41), expression (27) for the crit-
ical load takes the form

(42)

Approximation of the stability-region boundary given
by Eq. (39) that follows from Eq. (42) for qcr = q0 is
shown by the dashed line in Fig. 3. According to

18 2 7–
5

----------------------

u0
7

140
---------

5–

11 7–
, v0

11 7–

5
,= =

u1

iω0

120
---------

5–

11 3 7–
, v1

7iω0

3
----------- 1

0
.= =

f = 
3
7
--- 9 7–

0
, f̃  = 

15
14
------, h–  = 

ω0 7
42

------------- 3 9 7+( )
7

,–

H 0, G≡ 1
24
------

0 3

3 7
.=

qcr γ κ,( ) q0
7

30
------- 216 9 7–( )2γ2

9 7+( )3γ 7κ+( )2
-----------------------------------------------–=

+
7

30
------- 6γκ 7κ2+( ).

1.0

0.5

0 0.5

κ

γ

Fig. 3. Asymptotic-stability region is shaded on the plane of
the parameters of internal γ and external κ damping for
qcr = q0 .
Eq. (42), the critical load for γ = 0 increases with exter-

nal damping as qcr = q0 + , which agrees with the

shape of the stability region shown in Fig. 3.

The substitution of Eq. (41) into Eqs. (32) and (33)
provides explicit expressions describing the trajectories
of the eigenvalues on the complex plane as well as the
behavior of their real parts when varying the load
parameter q:

(43)

(44)

For κ = γ = 0, the eigenvalues are strongly coupled
at q = q0 . In the absence of internal damping (γ = 0), the
double eigenvalue is displaced to the left-hand side of
the complex plane due to external damping κ stabiliz-
ing the circulatory system. In this case,  = q0 accord-
ing to Eqs. (29) and (42). In the absence of external
damping (κ = 0), internal damping γ destroys strong
interaction and displaces frequency curves to the left-
hand side of the complex plane. In this case, the Reut–
Sugiyama pendulum is destabilized by internal damp-
ing, and, according to Eqs. (29) and (42), the jump of
the critical load for γ  0 is equal to

(45)

which agrees satisfactorily with the exact value ∆q =

 . 0.89725 [11]. The approximate jump

value ∆q = 0.43733 for  = 1 and γ  0 is quite close

to the exact value ∆q = 0.42198. Thus, the approxima-
tion of the critical-load jump by Eqs. (29) and (42) is

improved with decreasing the ratio  to zero.

7κ2

30
--------

Im λ ω0– Reλ 3 9 7+( )γ 7κ+
14

----------------------------------------+ + 
 

2

– Im λ ω0– Reλ– 3 9 7+( )γ 7κ+
14

----------------------------------------– 
 

2

=  γ
6 7 9–( )ω0

7
------------------------------,

Re λ 3 9 7+( )γ 7κ+
14

----------------------------------------+ 
 

4

–
3
14
------ 5 q q0–( ) 3γ

7
------ 44 9 7+( )γ 21κ+( )+ 

 

× Re λ 3 9 7+( )γ 7κ+
14

----------------------------------------+ 
 

2

 = γ227 44 7 63–( )
343

------------------------------------.

q̃cr

∆q
4 7

5
---------- 44 9 7–

44 9 7+
----------------------  . 0.63013,=

2 44 9 7–( )
45

------------------------------

γ
κ
---

γ
κ
---
DOKLADY PHYSICS      Vol. 49      No. 4      2004



DESTABILIZATION PARADOX 245
ACKNOWLEDGMENTS

I am grateful to A.P. Seyranian for attention to the
work and stimulating discussions. This work was sup-
ported by the Russian Foundation for Basic Research
and National Natural Science Foundation of China
(project no. 02-01-39004), Russian Foundation for
Basic Research (project no. 03-01-00161), and Basic
Research and Higher Education Program administered
jointly by the US Civilian Research and Development
Foundation for the Independent States of the Former
Soviet Union and the Ministry of Education of the Rus-
sian Federation (grant no. Y1-MP-06-19).

REFERENCES

1. H. Ziegler, Ing. Archiv. 20, 49 (1952).

2. V. V. Bolotin, Nonconservative Problems in the Theory
of Elastic Stability (Fizmatgiz, Moscow, 1961; Perga-
mon, London, 1965).
DOKLADY PHYSICS      Vol. 49      No. 4      2004
3. V. V. Bolotin and N. I. Zhinzher, Int. J. Solids Struct. 5,
965 (1969).

4. A. P. Seyranian, Usp. Mekh. 13 (2), 89 (1990).
5. A. P. Seyranian, Izv. Ross. Akad. Nauk, Mekh. Tverd.

Tela, No. 1, 142 (1994).
6. V. F. Zhuravlev, Izv. Akad. Nauk, Mekh. Tverd. Tela,

No. 6, 13 (1992).
7. A. P. Seyranian, Dokl. Akad. Nauk 348, 323 (1996)

[Phys. Dokl. 41, 214 (1996)].
8. O. N. Kirillov, How Do Small Velocity-Dependent

Forces (De)stabilize a Non-Conservative System? (Dan-
ish Center for Applied Mathematics and Mechanics-
DCAMM, Copenhagen, 2003), Rep. No. 681.

9. V. I. Arnold, Additional Chapters of the Theory of Ordi-
nary Differential Equations (Nauka, Moscow, 1978;
Springer, New York, 1983).

10. H. Bilharz, Z. Angew. Math. Mech. 24, 77 (1944).
11. Y. Sugiyama, in Modern Problems of Structural Stability

(Springer, Vienna, 2002), pp. 341–394.

Translated by R. Tyapaev


