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Gyroscopic stabilization in presence of non-conservative forces
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Abstract— Stability of a linear autonomous non-
conservative system in presence of potential, gyroscopic,
dissipative, and non-conservative positional forces is stud-
ied. It is known that marginal stability of a gyroscopic sys-
tem can be destroyed or improved up to asymptotic stabil-
ity due to action of small non-conservative positional and
damping forces. The present paper shows that the bound-
ary of the asymptotic stability domain of the perturbed sys-
tem possesses singularities such as “Dihedral angle” and
“Whitney umbrella” that govern stabilization and desta-
bilization. Approximations of the stability boundary near
the singularities and estimates of the critical gyroscopic
parameter are found in an analytic form. As an example,
stability of the Crandall gyropendulum with stationary and
rotating damping is considered in detail.
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I. Introduction

Consider an autonomous non-conservative system de-
scribed by a linear differential equation of second order

ẍ + (γG + δD)ẋ + (νN + P)x = 0, (1)

where dot denotes time differentiation, x ∈ Rm, and real
matrices D = DT , G = −GT , and N = −NT are related
to dissipative (damping), gyroscopic, and non-conservative
positional (circulatory) forces with magnitudes controlled
by scaling factors δ, γ, and ν respectively, and real matrix
P = PT corresponds to potential forces [1–33].

For P = −K < 0, the trivial solution to equation (1)
is statically unstable (divergence) in the absence of dissi-
pative, gyroscopic, and circulatory forces. A phenomenon
of gyroscopic stabilization is that for even m, a statically
unstable potential system can be made stable in the sense
of Lyapunov by gyroscopic forces only (δ = ν = 0), if
detG �= 0 and the absolute value of the gyroscopic param-
eter is sufficiently large (|γ| > γ0), see e.g. [1], [11], [14],
[17], [18], [20], [21].

It is known that for m = 2 and detG = 1 the critical
value of the gyroscopic parameter is simply [18], [32]

γ0 =
√

TrK + 2
√

detK =
√

λ1(K) +
√

λ2(K) > 0,
(2)
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where λ1(K) and λ2(K) are eigenvalues of the real sym-
metric matrix K > 0.

The problem of estimation of γ0 for the case m > 2 is
much more complicated, and in general it should be solved
numerically, see [11], [14], [18], [20], [21] and references
therein.

The marginal stability of a potential gyroscopic sys-
tem is destroyed due to action of the dissipative and non-
conservative positional forces. The latter, known also as
circulatory forces, typically appear in systems with fol-
lower loads caused, e.g., by the jet thrust [6], [7], [8], [9],
[14], [19] or by friction in contact [2], [3], [4], [17], [24],
[25], [26], [28], [33]. Instead, the dissipative and circu-
latory forces can make the gyroscopic system asymptoti-
cally stable. The critical value of the gyroscopic parame-
ter at the onset of the gyroscopic stabilization γcr(δ, ν) is
then a function of parameters, corresponding to the non-
conservative forces, and can differ dramatically from γ 0

[17], [32].
In spite of the fact that the effect of dissipative and non-

conservative positional forces on stability of rotors, which
are statically stable when non rotate, has a long history, see
e.g. [2], [3], [4], [5], [7], [9], [10], [14], [16], the problem of
gyroscopic stabilization in presence of such forces seems to
attract considerable attention of researchers only in recent
years [17], [25], [26], [28], [32], [33].

The goal of the present paper is to study the effect of
weak damping and non-conservative positional forces on
the onset of the gyroscopic stabilization and to obtain the
estimates of the critical gyroscopic parameter γcr(δ, ν).

II. Gyroscopic stabilization of a potential system

In our subsequent considerations we assume that in
the absence of dissipative and non-conservative positional
forces (δ = ν = 0) the gyroscopic stabilization of the sys-
tem (1) occurs for γ > γ0 > 0. This means that all the
eigenvalues λ of the eigenvalue problem

(Iλ2 + λγG − K)u = 0, (3)

where I is the identity matrix, are purely imaginary and
semi-simple. At γ = γ0 there exists a pair of double purely
imaginary eigenvalues λ = ±iω0 with the Jordan chain of
length 2, other eigenvalues being simple and purely imagi-
nary [17], [18], [20], [21].
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The Jordan chain at the eigenvalue iω0 consists of the
eigenvector u0 and associated vector u1, which solve the
following equations [18], [29]

(−Iω2
0 + iω0γ0G− K)u0 = 0, (4)

(−Iω2
0 + iω0γ0G− K)u1 = −(2iω0I + γ0G)u0. (5)

The eigenvector u0 satisfies the orthogonality condition

u∗
0(2iω0I + γ0G)u0 = 0, (6)

where the asterisk denotes Hermitian conjugate. With the
help of equation (4) the orthogonality condition (6) yields
the Rayleigh quotient for the critical frequency

ω2
0 =

u∗
0Ku0

u∗
0u0

. (7)

In the vicinity of γ = γ0, the double eigenvalue and the
corresponding eigenvector are changing according to the
formulae

iω(γ) = iω0 ± iμ
√

γ − γ0 + O(γ − γ0), (8)

u(γ) = u0 ± iμu1

√
γ − γ0 + O(γ − γ0), (9)

where μ2 is a real quantity

μ2 =
iω0u∗

0Gu0

2iω0u∗
0u1 + γ0u∗

0Gu1 + u∗
0u0

(10)

= − 2ω2
0u

∗
0u0

γ0(ω2
0u

∗
1u1 + u∗

1Ku1 − iω0γ0u∗
1Gu1 − u∗

0u0)
,

(11)
see e.g. [29].

For m = 2 and detG = 1, at the critical value of the gy-
roscopic parameter γ0 defined by equation (2), the double
eigenvalue

iω0 = i
4
√

detK (12)

has the Jordan chain consisting of the eigenvector u0 and
associated vector u1

u0 = C

( −iω0γ0 + k12

−ω2
0 − k11

)
, (13)

u1 = − C

ω2
0 + k22

(
0

iω0(k11 − k22) + γ0k12

)
, (14)

where C is a complex coefficient. The vector u1 is defined
up to an addend proportional to u0. Substituting the vectors
(13) and (14) into equation (10) and taking into account the
orthogonality condition (6), we get

μ2 =
γ0

2
(k11 + ω2

0)(k22 + ω2
0)

γ2
0ω2

0 + k2
12

=
γ0

2
> 0. (15)

Therefore, the coefficient μ =
√

γ0/2 is a real quantity
and according to the formula (8), for γ > γ0 the double
eigenvalue splits into two simple purely imaginary eigen-
values (gyroscopic stabilization). As it follows from ex-
pressions (8) and (11), the same mechanism governs the gy-
roscopic stabilization of a statically unstable potential sys-
tem in the case of arbitrary even m, see e.g. [18], [21].

III. Gyroscopic stabilization of a non-potential system

The most interesting for many applications is the situa-
tion when system (1) is weakly non-potential with δ ∼ ν �
γ ∼ γ0. Furthermore, the effect of small damping and non-
conservative positional forces on the stability of gyroscopic
systems is regarded as paradoxical, since the stability prop-
erties are extremely sensitive to the choice of the perturba-
tion, and the balance of forces resulting in the asymptotic
stability is not evident [7], [17], [33]. This characteriza-
tion sounds even more justified if to take into account the
connection of the destabilization paradox with the physi-
cal paradoxes such as “tippe top inversion” and “rising egg
phenomenon” [25], [26], [28], [33].

Perturbing the system (1), which is stabilized by the gy-
roscopic forces with γ > γ0, by small damping and cir-
culatory forces, yields an increment to a purely imaginary
eigenvalue iω(γ) [13], [16], [29], [32]

λ = iω − iωu∗Duδ + u∗Nuν

2iωu∗u + u∗Guγ
+ o(δ, ν) (16)

= iω +
ω2u∗Duδ − iωu∗Nuν

u∗Ku− ω2u∗u
+ o(δ, ν). (17)

where u(γ) is the eigenvector corresponding to iω(γ).
Since D and K are real symmetric matrices and N is

a real skew-symmetric one, the increment to the eigenvalue
iω(γ) due to action of small damping and circulatory forces
is a real quantity. When it is negative, the purely imaginary
eigenvalue moves to the left side of the complex plane due
to action of small damping and circulatory forces. If at a
given γ all the purely imaginary eigenvalues take negative
increments, the system (1) is asymptotically stable.

Consequently, in the first approximation with respect to δ
and ν, a simple purely imaginary eigenvalue iω(γ) remains
on the imaginary axis, if

ν = β(γ)δ, (18)

where

β(γ) = −iω(γ)
u∗(γ)Du(γ)
u∗(γ)Nu(γ)

. (19)

In general, for a given γ, two lines of the kind (18),
corresponding to two different purely imaginary eigenval-
ues, form the linear approximation to the boundary of the
asymptotic stability domain of the weakly non-potential gy-
roscopic system (1) near the origin in the plane of the pa-
rameters δ and ν.

If the functions ω(γ) and u(γ) are known in expression
(19), then equation (18) gives the linear approximation to
the asymptotic stability domain in the space of three pa-
rameters δ, ν, and γ. In [32] the functions ω(γ) and u(γ)
of the unperturbed gyroscopic system with m = 2 degrees
of freedom were found exactly and used for the calculation
of the stability boundary and the critical value of the gy-
roscopic parameter γcr(δ, ν). In the earlier work [17] an
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analogous approach has been used for the study of stability
of a gyroscopic pendulum.

We note that in general explicit analytical expressions for
ω(γ) and u(γ) cannot be derived. Instead, numerical data
can be used as it has been done in [8]. An alternative way
is to use approximate analytical expressions for eigenfre-
quencies and eigenfunctions, obtained by the methods of
perturbation theory.

In the vicinity of γ = γ0 all simple eigenvalues iω(γ)
vary slowly when γ is changing, except for the two eigen-
values that coincide at γ = γ0, as it follows from expan-
sions (8). It is intuitively clear that the behavior of these
two eigenvalues due to small non-conservative perturbation
is defining for the stability of a weakly non-potential gy-
roscopic system. For this reason, we estimate the critical
value of the gyroscopic parameter at the onset of gyroscopic
stabilization of system (1), substituting the expansions (8)
and (9) in expression (19)

β(γ) = −(iω0 ± iμ
√

γ − γ0)
u∗(γ)Du(γ)
u∗(γ)Nu(γ)

= −(ω0 ± μ
√

γ − γ0)
d1 ∓ μd2

√
γ − γ0

n1 ± μn2
√

γ − γ0
, (20)

where real scalars d1, d2, n1, and n2 are

d1 = Re(u∗
0Du0), d2 = Im(u∗

0Du1 − u∗
1Du0), (21)

n1 = Im(u∗
0Nu0), n2 = Re(u∗

0Nu1 − u∗
1Nu0). (22)

From formula (20) it follows that the new critical value
is given by the expression

γcr(β) = γ0 +
n2

1(β − β0)2

μ2(ω0d2 − β0n2 − d1)2
, (23)

which is valid for β − β0 � 1, where β0 is the value of the
function β(γ) at the onset of the gyroscopic stabilization
for the potential gyroscopic system

β0 = β(γ0) = −iω0
u∗

0Du0

u∗
0Nu0

. (24)

Substituting β = ν/δ in expression (23) yields the equa-
tion

γcr(δ, ν) = γ0 +
n2

1(ν − β0δ)2

μ2(ω0d2 − β0n2 − d1)2δ2
≥ γ0, (25)

which together with formula (24) constitutes the central re-
sult of our work. The equations obtained give a simple ap-
proximation of the boundary of the asymptotic stability do-
main of the weakly non-potential gyroscopic system in the
vicinity of the point (0, 0,±γ0) in the space of the param-
eters (δ, ν, γ), as well as provide an estimate of the critical
value of the gyroscopic parameter γcr(δ, ν).

It is remarkable that equation (25) has the form Z =
X2/Y 2, which is canonical for the singular surface known

Fig. 1. The singularities ”dihedral edge” (a) and ”Whitney umbrella”.

as the Whitney umbrella [22], [32], [34]. This fact sup-
ports the qualitative picture established by Arnold [34], that
the boundary of the asymptotic stability domain of a mul-
tiparameter family of real matrices is not a smooth surface.
Generically it possesses singularities corresponding to mul-
tiple eigenvalues with zero real part. In particular, for real
matrices depending on three parameters, two different pairs
of simple purely imaginary eigenvalues originate a singu-
larity of the stability boundary, which is shaped as a dihe-
dral angle in the parameter space Fig. 1(a). A pair of double
purely imaginary eigenvalues with the Jordan block corre-
sponds to the singularity deadlock of an edge, which is a
half of the Whitney umbrella surface [34], see Fig. 1(b).

Expression (25) explicitly shows that the function
γcr(δ, ν) is non-differentiable at the origin and depends
only on the ratio β = ν/δ. Therefore, the limit of γcr(δ, ν)
at the origin is not defined and strongly depends on the
direction of approaching given by β. Most of the direc-
tions β give the limit value γcr(β) > γ0. The latter means
that the critical ”angular velocity” γ generally jumps up
for infinitely small δ and ν. Such ”jumps” illustrating the
high sensitivity of the critical parameters responsible for
the onset of the flutter instability to small imperfections are
caused by the Whitney umbrella singularity of the domain
of the asymptotic stability of a non-conservative gyroscopic
system.

We note that the formulae (24) and (25) generalize the re-
sult of [32], obtained for the non-potential gyroscopic sys-
tem (1) with m = 2 and detG = 1, to the case of ar-
bitrary even m and detG �= 0. Indeed, for m = 2 and
detG = 1, computation of β0 by formula (24) with the use
of the eigenvector (13) yields

β0 =
d11(ω2

0 + k22) − 2d12k12 + d22(ω2
0 + k11)

2γ0

=
Tr

[
(γ2

0 − ω2
0)I − K

]
D

2γ0
, (26)

in agreement with [32]. Substituting the eigenvector (13)
and associated eigenvector (14) into expressions (21) and
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(22), we find

n1 = −2γ0ω0(ω2
0 + k11), (27)

n2 = −2γ0
ω2

0(k22 − k11) + k2
12

ω2
0 + k22

, (28)

d1 = 2γ0β0(ω2
0 + k11), (29)

d2

2ω0
=

(d12k12 − d22(ω2
0 + k11))(k22 − k11) − d12k12γ

2
0

ω2
0 + k22

.

(30)
Taking into account that γ2

0 = TrK + 2ω2
0 , and using

the relations (27)–(30) we calculate the expression in the
denominator of formula (25)

ω0d2 − β0n2 − d1 =

= 2ω2
0

(k22 − k11 − γ2
0)(β0γ0 + d12k12)

ω2
0 + k22

−2ω2
0

d22(ω2
0 + k11)(k22 − k11)

ω2
0 + k22

= ω2
0

(d11(ω2
0 + k22) − d22(ω2

0 + k11))(k22 − k11)
ω2

0 + k22

−ω2
0

γ2
0(d11(ω2

0 + k22) + d22(ω2
0 + k11))

ω2
0 + k22

= −2ω2
0(ω

2
0 + k11)TrD. (31)

Then, substituting expressions (15), (27) and (31) into
equation (25) we find that [32]

γcr(ν, δ) = γ0 + γ0
2

(ω0TrD)2
(ν − β0δ)2

δ2
(32)

where β0 is given by formula (26). We note that the equa-
tions (26) and (32) have been derived in [32] from the sta-
bility conditions of Routh and Hurwitz.

IV. Stability of a gyropendulum with stationary and ro-
tating damping

As an example we consider the Crandall gyropendulum
[17], [32]. The pendulum is an axisymmetric rigid body
pivoted at a point O on the axis as shown in Fig. 2. When
the axial spin Ω is absent, the upright position is statically
unstable. When Ω �= 0 the body becomes a gyroscopic pen-
dulum. Its primary parameters are its mass m, the distance
L between the mass center and the pivot point, the axial
moment of inertia Ia, and the diametral moment of inertia
Id about the pivot point. The gravity acceleration is denoted
by g.

It is assumed that a drag force proportional to the linear
velocity of the center of mass of the gyropendulum acts at
the center of mass to oppose that velocity (stationary damp-
ing with the coefficient bs). Additionally, it is assumed that

Fig. 2. The Crandall gyropendulum.

a rigid sphere concentric with the pendulum tip O, is at-
tached to the pendulum and rubs against a fixed rub plate.
The gyropendulum is supported frictionlessly at O, while a
viscous friction force acts between the larger sphere and the
rub plate, being responsible for the rotating damping with
the coefficient br. The linearized equations of motion for
the gyropendulum in the vicinity of the vertical equilibrium
position derived in [17] have the form (1) with the matrices
G, D, K, and N given by the expressions

γG =
(

0 ηΩ
−ηΩ 0

)
, δD =

(
σ + ρ 0

0 σ + ρ

)
,

K =
( −α2 0

0 −α2

)
, νN =

(
0 ρΩ

−ρΩ 0

)
. (33)

The system depends on the spin Ω and four parameters

η =
Ia

Id
, σ =

bs

Id
, ρ =

br

Id
, α2 =

mgL

Id
, (34)

where α is the non-spinning pendulum frequency and η is
responsible for the shape of the gyropendulum: for η < 1
the pendulum is prolate, and for η > 1 it is oblate. Parame-
ters σ and ρ correspond to the stationary and rotating damp-
ing respectively. We notice that the stationary damping con-
tributes only to the matrix δD while the rotating damping is
responsible also for the appearance of the non-conservative
positional forces described by the skew-symmetric matrix
νN. Thus, the Crandall gyropendulum can be treated as a
conservative gyroscopic system perturbed by weak damp-
ing and non-conservative positional forces.

For σ = ρ = 0 the pendulum is stabilized by gyroscopic
forces for Ω2 > Ω0

2. At the points of the stability boundary
Ω = ±Ω0 the spectrum of the gyropendulum has a pair of
double purely imaginary eigenvalues ±iω0, where accord-
ing to (2) and (12) Ω0 = 2α/η and ω0 = α. Writing the
Liénard-Chipart conditions for the characteristic polyno-
mial of the Crandall gyropendulum with the damping forces
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Fig. 3. The domain of the gyroscopic stabilization of the Crandall gy-
ropendulum is a half of the Whitney umbrella.

we find the inequalities defining the asymptotic stability do-
main

σ + ρ > 0 (35)

η2Ω2 + (σ + ρ)2 − 2α2 > 0 (36)

Ω2 − (σ + ρ)2α2

σηρ + ηρ2 − ρ2
> 0. (37)

Since the inequality (37) implies

Ω2 > Ω0
2 +

1
ρ

α2

η2

(ση + ρ(η − 2))2

ση + ρ(η − 1)
≥ Ω0

2, (38)

the asymptotic stability domain is given only by the condi-
tions (35) and (37), which can be written in the form

Ω > Ω+
cr(ρ, σ), Ω < Ω−

cr(ρ, σ), σ + ρ > 0, (39)

where the critical values of the spin Ω as a function of the
two damping parameters are

Ω±
cr(ρ, σ) = ± (σ + ρ)α√−ρ2 + ρ2η + ρησ

. (40)

Equations (40) describe two surfaces in the space of the
parameters ρ, σ, and Ω. Both surfaces have Whitney um-
brella singularities at the points (0, 0,±Ω0). The surface
Ω+

cr(ρ, σ) is shown in Fig 3. for α = 1 and η = 2. The in-
equality (35) selects the stable pocket of the Whitney um-
brella. In spite of the fact that the formulae for the criti-
cal spin analogous to (40) were found by Crandall with the
use of a perturbation technique, the singular nature of the
asymptotic stability domain was not recognized in [17].

As it follows from the expressions (38), Ω+
cr ≥ Ω0 and

Ω−
cr ≤ −Ω0, which can be interpreted as the destabilization

of the conservative gyroscopic system by the damping and
non-conservative positional forces. The critical loads co-
incide only for the specific ratios of the coefficients of the
stationary and rotating damping

bs

br
=

σ

ρ
=

2 − η

η
=

Ω0

ω0
− 1 (42)

in agreement with the result obtained in [17].

V. Conclusion

It was found that the boundary of the gyroscopic stabi-
lization domain of a non-conservative system possesses the
Whitney umbrella singularity. The singularity is respon-
sible for the high sensitivity of the critical gyroscopic pa-
rameter to small variations of the matrices of damping and
circulatory forces. The price for the gyroscopic stabiliza-
tion of a non-conservative system is generally higher val-
ues of the gyroscopic parameter and non-trivial choice of
balance of damping and non-conservative positional forces.
Explicit analytical approximations of the boundary near the
singularity and estimates of the critical gyroscopic parame-
ter were derived in an analytic form for the systems with ar-
bitrary even degrees of freedom. Finally, it was established
that the stability boundary of the Crandall gyropendulum,
considered as a mechanical example, consists of two pock-
ets of two Whitney umbrellas.
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