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ABSTRACT

The paradox of destabilization of a conservative or non-
conservative system by small dissipation, or Ziegler'sapax
(1952), has stimulated an ever growing interest in the $itgi
of reversible and Hamiltonian systems with respect to péssi
tive perturbations. Since the last decade it has been widely
cepted that dissipation-induced instabilities are clgsellated
to singularities arising on the stability boundary. Whatléss
known is that the first complete explanation of Ziegler'sgainx
by means of the Whitney umbrella singularity dates back 5619
We revisit this undeservedly forgotten pioneering resylOene
Bottema that outstripped later findings for about half a cent
We discuss subsequent developments of the perturbatidy- ana
sis of dissipation-induced instabilities and applicasmver this
period, involving structural stability of matrices, Kreaollision,
Hamilton-Hopf bifurcation and related bifurcations.

INTRODUCTION

‘Il 'y a de nouveau que ce qui est oublié’—this paraphrase
of the Ecclesiastes 1:10, attributed to Marie-Antoingitefectly
summarizes the story of the mathematical description of the
destabilizing effect of vanishing dissipation in non-censtive
systems.

There is a fascinating category of mechanical and physical
systems which exhibit the following paradoxical behaviehen
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libria or stable steady motions, but when small dampingti®in
duced, some of these equilibria or steady motions beconta-uns
ble.

The paradoxical effect of damping on dynamic instability
was noticed first for rotor systems which have stable steaaly m
tions for a certain range of speed, but which become unstabl
when the speed is changed to a value outside the range.

In 1879 Thomson and Tait [67] showed that a statically un-
stable conservative system which has been stabilized by- gyr
scopic forces could be destabilized again by the introdaatif
small damping forces. More generally, they consider censer
vative and nonconservative linear two degrees of freedosn sy
tems in remarkable detail. The destabilization by dampirsg,
ing Routh’s theorems, is implicit in their calculations;jstnot
formulated as a paradox.

In 1924, to explain the destabilization of a flexible rotor
in stable rotation at a speed above the critical speed farres
nance, Kimball [32] introduced a damping of the rotationjahh
has lead to non-conservative positional (circulatorygésrin the
equations of motion of a gyroscopic system. In 1933 Smith [64
found that this non-conservative rotor system loses styatihen

the speed of rotatiof® > w( 1+ %) wherew is the undamped

natural whirling frequency (the critical speed for resorgrand
6 andv are the viscous damping constants for the stationary an
rotating damping mechanisms. In Smith’s model, the destabi

modeled as systems without damping they possess stable equi!izing effect of the damping of rotatiofv), observed also by

*Address all correspondence to this author.

Kapitsa [30], was compensated by the stationary damfdhg
This was a first demonstration of a strong influence of thealpat
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distribution of damping (or equivalently the modal distriion)
on the borderlines between stability and instability damsan
multi-modal non-conservative systems [15].

In 1950s and 1960s the publications of Ziegler [76], Bolotin
[8,9], and Herrmann [21, 22], motivated by aerospace agplic
tions, initiated a considerable activity in the investigatof dy-
namic instability of equilibrium configurations of structs un-
der non-conservative loads. The canonical problem wasuhe fl
ter of a vertical flexible cantilever column under a compiress
non-conservative or follower load which remains tangertht®
bending column. In the flutter mode the tip of the column is pre
ponderantly slanted toward the left during the half-cynlehich
the tip is moving toward the right and vice versa in the foliogy
half-cycle. This snake-like oscillation permits the foller force
to do positive work on each cycle [15].

The strong influence of the spatial or modal distribution
of damping within the structure on its stability under non-
conservative loading, observed in these publications)lshwot
have been surprising in the light of earlier findings of radgr
namists. However, they revealed clearly the most dramatic a
paradoxical aspect of the sensitivity of the stability of thon-
conservative structures to small damping forces. It turoed
that the critical load for a structure with small damping may
be considerably smaller than that for the same structurteowit
damping. In other words, there is a wide range of loads foctvhi
the undamped structure is stable, but which produce irgedis
soon as a tiny bit of damping is added to the structure.

These aspects were actively studied in the 1960’s to pro-
vide more basic understanding and they continued to beestudi
with more sophisticated tools, including early attempt®ho-
ploy singularity theory [69], until in the mid 1990s it was-un
derstood [26, 61] that the destabilization paradox is egléad the
Whitney umbrella singularity of the stability boundary [73].

In the present article we make a sharp turn to the 1950s to re-

visit an article of Oene Bottema [11], then rector of the Techl
University of Delft, who in 1956 first made this discovery, il
surprisingly surpassed the attention of most scientistaigtdive
decades.

In section 1 we will put these results in the context of singu-
larity theory, in sections 2 and 4 we show in various waysrthei
extension to finite- and infinite-dimensional systems ugiag
turbation theory of multiple eigenvalues, in section 3 wesider
periodic systems, and in the remainder we discuss aplitain
physics and engineering.

WHITNEY’S UMBRELLA

In a remarkable paper of 1943 [72], Hassler Whitney de-
scribed singularities of maps of a differentiemanifold intoE™
with m=2n—1. It turns out that in this case a special kind
of singularity plays a prominent role. Later, the local getm
ric structure of the manifold near the singularity has begttya

2

called ‘Whitney’s umbrella’ [73].
The paper contains two main theorems. Conside€ttmap
f:E"— EMwithm=2n-1.

1. The mapf can be altered slightly, forming*, for which
the singular points are isolated. For each such an isolate
singular pointp, a technical regularity conditio@ is valid
which relates to the mafi* of the independent vectors near
p and of the differentials, the vectors in tangent space.

2. Consider the map* which satisfies conditio€. Then we
can choose coordinates= (x1,X2, -+ ,X) In @ neighbor-
hood of p and coordinatey = (y1,Y2,---,Ym) (with m=
2n—1) in a neighborhood of = f(p) such that in a neigh-
borhood off*(p) we have exactly

V1=, Yi =X, Yntri-1=XX;, (1)
wherei =2,---,n.
If for instancen = 2, m= 3, we have near the origin
Y1 =X, Y2 = X2, Y3 = X1Xe, (2)
so thaty; > 0 and on eliminatings andxo:
y1ys —¥5=0. (3)

Starting on they,-axis fory; = y3 = 0, the surface widens up
for increasing values of;. For eachy,, the cross-section is a
parabola; ag, passes through 0, the parabola degenerates to
half-ray, and opens out again (with sense reversed).

Note that because of ti@ assumption for the differentiable
map f, the analysis is delicate. There is a considerable simplifi:
cation of the treatment if the map is analytical.

The analysis of singularities of functions and maps is a fun-
damental ingredient for bifurcation studies of differahgqua-
tions. After the pioneering work of Hassler Whitney and Mans
Morse, it has become a huge research field, both in thedrretici
investigations and in applications. We can not even preaent
summary of this field here, so we restrict ourselves to ciing
number of survey texts and discussing a few key conceptsand e
amples. In particular we mention [3], [17], [18], [4], [2] &f5].

A monograph relating bifurcation theory with normal fornmsla
numerics is [47].

The relation between singularities of functions and aaitic
points or equilibria of differential equations becomesaclhen
considering Hamiltonian and gradient systems. Consideinfo
stance the time-independent Hamiltonian functibfp,q) with
p,g € R". Singularities of the functiot are found in the set
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R? where

oH oH _
op g

These points correspond with the critical points (equidipof
the Hamiltonian equations of motion

. oH

OH . oH
P=15q 0

0

More in general, consider the dynamical system describéddoy
autonomous ODE

x=f(x), x eR", f: R"— R".

An equilibriumxg of the system arises f{xg) = 0. With a little
smoothness of the mdpve can linearize neag so that we can
write X = A (X — Xg) +g(x) with A a constanh x n— matrix, g(x)
contains higher-order terms only.

The properties of the matriA determine in a large num-
ber of cases the behavior of the dynamical system. In a s€émina
paper [3], Arnold considers families of matrices, smoottiby
pending on a number of parameters (denoted by vegxtoso,
for the constanh x n— matrix we write A,. Suppose that for
p =0, Ag is in Jordan normal form. Choosimmin a neighbor-
hood ofp = 0 produces aeformation(or perturbation) ofA,
assuming that negr = 0 the entries oA can be expanded in
a convergent power series in the parameters. A deformation i
versalif all other deformations negr = 0 are equivalent under
smooth change of parameters.

The paper [3] uses normal forms to obtain suitable versal
deformations. These are associated with the bifurcatibtiseo
linearized system. Note that although a matrix inducesealin
map, the corresponding eigenvalue problem produces reatlin
characteristic equations. In addition, the parametersived,
make it necessary to analyze mapsRfinto R™. For instance
in the following sections we meet with maps frd@s into R3 as
studied by Whitney [72]. Nevertheless, in 1943 it was hard to
imagine that this work of global analysis, a pure matherahtic
abstraction, would find an industrial application alreadythe
next decade.

ZIEGLER’S PARADOX

In 1952 Hans Ziegler of ETH Zurich published a paper [76]
that became classical and widely known in the community of
mechanical engineers; it also attracted the attention dhena
maticians. Studying a simplified two-dimensional model of a

load, he unexpectedly encountered a phenomenon which shov
a paradoxal character: the domain of stability of the Ziegle
pendulum changes in a discontinuous way when one passes frc
the case in which the damping is very small to that where it ha
vanished [76].

Figure 1. (@) Ziegler's pendulum, (b) (bold line) Stability interval of the
undamped pendulum and (shaded area) the domain of asymptotic stabil-
ity of the damped one [76].

Ziegler's double pendulum presented in Fig. 1(a) consist:
of two rigid rods of length each, whose inclinations with re-
spect to the vertical are denotedg@@sand$,. Two massesmy
andm, with the weightsG; andG; are concentrated at the dis-
tancesa; anday from the joints. The elastic restoring torques
and the damping torques at the joints ada, c(¢2 — ¢1) and
b1d1, ba(d2 — d1), respectively. Assuming; = 0 andG; =0
for simplicity, we find the Lagrange’s equations of motion

(mlaftr?lzali rrrlézg) ($;) . @
(bltgz —Ez) (¢;)+<—PI+_ZE PI—(;) ($;) o

With the substitutionp; = AiexpAt) equation (4) yields a 4-
dimensional eigenvalue problem with respect to the speutra
rameter.

Puttingm =2m, np =m, g =a> =1, by = b, =b and
assuming that dissipation is abséht= 0), Ziegler found from
the characteristic equation that the vertical equilibriposition
of the pendulum loses its stability when the magnitude of the
follower force exceeds the critical vall, where

G-

In the presence of dampirfg > 0) the Routh-Hurwitz con-

R

~ 2.oseT° . )

elastic rod fixed at one end and compressed by a tangential enddition yields the new critical follower load that dependstbe

3
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square of the damping coefficiemt

10
2mi3’

_4lc

P(b) = 28] (6)

Ziegler found that the domain of asymptotic stability foeth
damped pendulum is given by the inequalitRs< P(b) and

b > 0 and plotted it against the stability internval< B of the
undamped system, Fig. 1(b). Surprisingly, the limit of thi&i-c
cal loadR(b) whenb tends to zero turned out to be significantly
lower than the critical load of the undamped system

41c

C
lim A(b) ~ 14647 <P,

(7)

Some authors considered different extensions of the
Ziegler's model by adding a conservative load and by assum-
ing difference of the damping coefficients [9, 21, 33, 43, 68]
They established that the domain of instability for the unged
Ziegler's pendulum with the partially follower load extenith a
discontinuous manner in the presence of dissipation.

Ziegler drew attention both to the substantial decreadeen t
critical load of the damped non-conservative system withista
ingly small dissipation and to the high sensitivity of théical
follower load with respect to the variation of the damping-di
tribution. In the mechanical engineering literature thivge ef-
fects are called the Ziegler's paradox of destabilizatipisimall
damping.

In the conclusion to his classical book [8], Bolotin empha-
sized that the discrepancy between the stability domainsef
damped non-conservative systems and that of systems with in
finitesimally small dissipation is a topic of the greatesdret-
ical interest in stability theory. Encouraging furthereasch of
the destabilization paradox, Bolotin was not aware thattie
cial ideas for its explanation were formulated as early &$619

1 BOTTEMA'S SOLUTION

In 1956, in the journal ‘Indagationes Mathematicae’, there
appeared an article by Oene Bottema [11], then Rector Magnifi
cus of the Technical University of Delft, that outstrippedelr
findings for decades. Bottema’s work [10] can be seen as an in-
troduction, it was directly motivated by Ziegler's paradéiow-
ever, instead of examining the particular model of Zieghes,
studied in [11] a much more general class of non-conservativ
systems.

Following [10, 11], we consider a holonomic scleronomic
linear system with two degrees of freedom, the coordinatesl
y of which are chosen in such a way that the kinetic energy-is
(X2 +y?)/2. Hence the Lagrange equations of small oscillations

4

near the equilibrium configuration=y = 0 are as follows

X+ agiX+ agoy + biix+byy = 0,

Y+ ap1X + agoy + bpaX -+ by = 0, 8)

wherea;; andbjj are constantsh := (ajj) is the matrix of the
forces depending on the coordinatBs= (bjj) that of those de-
pending on the velocities. K is symmetrical while disregarding
the damping associated with the matBxthere exists a poten-
tial energy functionV = (ay1x? + 2agxy+ apxzy?) /2, if it is an-
tisymmetrical, the forces are circulatory. When the maliis
symmetrical, we have a non-gyroscopic damping force, wisich
positive when the dissipative functidiby 1x* + 2bxy+byzy?) /2

is positive definite. 1B is antisymmetrical the forces depending
on the velocities are purely gyroscopic.

The matricesA andB can both be written uniquely as the
sum of symmetrical and antisymmetrical parts= K + N and
B=D+G,whereN=vJ,G=QJ

) < 01

(). o-(3120) >-(2) o

with k11 = aq1, ko2 = azz, kiz = ko1 = (a12+a1)/2,v = (a12—
ap1)/2 anddyy = by, doz = b2, d12 = a1 = (b12+b21)/2,Q =
(b12—b21)/2.

The system (9) has a potential energy function (disreggrdin
damping) wherv = 0, it is purely circulatory fork;; = ko =
koo = 0, it is non-gyroscopic foQ = 0, and has no damping
whendi1 = di2 = dp2 = 0. If damping exists, we suppose in this
section that it is positive.

In order to solve the equations (9) we put C;exp(At),
y = Cyexp(At) and obtain the characteristic equation for the fre-
guencies of the small oscillations around equilibrium [B8,39]

diz di2
doy doo

K11 k12
ko1 ko2

Q:=M+ar+ar’+a\+as =0, (10)
with
a; =trD, ap=trK +detD + Q2
az = trKtrD —trKD +2Qv, a4 =detK +V2. (12)

Bottema found that all roots of (10) (assumed to be differ-
ent) have non-positive real parts if and only if one of the two
following sets of conditions is satisfied [11]

a? a2
A: a;>0,a>0a>0,a>0, azZL”,
aiag
B: a4=0,a>0,a3=0, a4 >0, a2 > 2\/au. (12)

Copyright © 2009 by ASME



One could expedB to be a limit of A, so that fora; — 0,
az — 0 the setA would continuously tend t8. That is not the
case. Remark first of all that the roots of (10) never have R@
if ag =0,a3#0 (oray # 0,a3 = 0). Furthermore, iAis satisfied
and we takeyy = €by, ag = €bs, whereb; andbs are fixed and
€ — 0, the last condition of reads(e # 0)

bfas+b3 )

az > byba

while fore = 0 we havea, > 2, /a4 = g2. Obviously we have [11]

(b1y/az —bs)?

J1—02= b1ba

so that(g: > g2) but forbz = by, /as. That means that in all cases
wherebs # by,/as we have a discontinuity in our stability con-
dition. The phenomenon of the discontinuity Bottema illats
by a geometrical diagram, Fig. 2.

Following Bottema [11] we substitute in (1Q)= cy, where
c is the positive fourth root oy > 0. The new equation
readsP := p* + by + bpp® 4 bau+ 1 = 0, whereb; = a;/c
(i=1,2,3,4). If we substitutea; = c'bj in A andB we get the
same condition as when we writg for a;, which was to be ex-
pected, because if the roots of (10) are outstdthose ofP = 0
are also outsid® and inversely. We can therefore restrict our-
selves to the cas® = 1, so that we have only three parameters
a1, ag, ag. We take them as coordinates in an orthogonal coordi-
nate system.

The conditiorH =0 or

ajapaz = a2 + a3 (13)

is the equation of a surfa&é of the third degree, which we have
to consider fora; > 0, ag > 0, Fig. 2. Obviously is a ruled
surface, the lines = ma, ag = m+1/m (0 < m < «) being
onV. The line is parallel to the& asz-plane and intersects the
ay-axis inag =az3 =0, ay = m+1/m> 2. Theaz-axis is the
double line ofV, a; > 2 being its active part. Two generators
pass through each point of it; they coincide &gr=2 (m= 1),
and fora, — o their directions tend to those of thg andaz-axis
(m=0,m= ). The conditionsA andB express that the image
point(as,ap,ag) lies onV or above/. The point(0,2,0) is onV,
but if we go to theap-axis along the lin@s = ma the coordinate
ap has the limitm+ 1/m, which is> 2 but form= 1. Curiously
enough, even half a century later, there appear paperstiggpea
this reasoning and the result almost literally [58].

Note that we started off with 8 parameters in eq. (8), but
that the surfac¥ bounding the stability domain is described by

5

a}

/ =
.
\
/, \ ~.
/
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Figure 2. The asymptotic stability domain of the system (8) with Whit-
ney’s umbrella singularity [11]. The ruled surface (called V in the text) is
given by (13)

3 parameters. It is described by a magEdfinto E2 as in Whit-
ney’s papers [72, 73]. Explicitly, a transformation of (18)(2)
is given bya; =y3/2+wW, ap=2+Yy,, az= —y3/2+wwith
w2 = Y3+ y1ye.

Returning to the non-conservative system ({8}~ 0), with
damping, but without gyroscopic forces, Qo= 0, and assuming
as in [10] thatk;2 = 0, ki1 > 0, andkz, > O (similar setting but
with di2 = 0 andki2 # 0 was considered later by Bolotin in [8]),
we find that the condition for stabilitd < 0 when the damping
force decreases in a uniform way, so we put = €d;,, di> =
ed},, d2o = €d),, wheredys, dio, d2 are constants and— 0,
reads

kip—koo)2  (d!, —db.)2(kyp — koo)?
v2<v(2;r::(11 22)”  (dyy—pp)*(kas—ka2)®

4 4(dq; +dpy)?

(14)
But if there is no damping, we have to make use of condiion

2 o (kin—kxp)?

Ve < Vg 7] =

trk \ 2
(7) —detK. (15)
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Obviously

(diy — djy)? (kiz — keo)?
4(dy; +djy)?

2 2
Vo~ — Vg =

2trK D — trk trD ]
= >0,
2trD -

(16)
where the expressions written in terms of the invariantshef t
matrices involved [39] are valid also without the restdas on
the matricedd andK that were adopted in [8, 10]. For the val-
ues of 2KB_KID \yhich are small with respect tey we can

approximately write [35, 36]

1 [ZtrKD—tthrDr

2trD (17)

If D depends on two parameters, Sayandd,, then (17) has a
canonical form (3) for the Whitney’s umbrella in t(i&;,;,v)-
space. Due to discontinuity existing for RD — trK trD £ 0 the
equilibrium may be stable if there is no damping, but ungtabl
if there is damping, however small it may be. We see also that
the critical non-conservative parametgy, depends on the ratio

of the damping coefficients and thus is strongly sensitivéhéo
distribution of damping similarly to how it happens in rotty-
namics. This is the results which Ziegler [76] found in a splec
case.

2 ‘HOPF MEETS HAMILTON UNDER WHITNEY’S UM-

BRELLA’

The title of this section derives from a nice paper by Lang-
ford [48]. As we have seen, Bottema was the first who estab-
lished that the asymptotic stability domain of a real polyral
of fourth order in the space of its coefficients consists & oh
the ‘pockets’ of the Whitney umbrella. The correspondimgysi-
larity was later identified as generic in the three paranfatei-
lies of real matrices by V.I. Arnold [3,4], who named it ‘ddack
of an edge’. In this respect Bottema’s results in [11] candsns
as an early study of bifurcations and structural stabilftpaly-
nomials and matrices, and therefore of the singularitietheif
stability boundaries whose systematical treatment wdied
since the beginning of 1970sin [3, 4,49, 50].

Although Bottema applied his result to nonconservative sys
tems without gyroscopic forces, there are reasons for tigpusi
larity to appear in the case when gyroscopic forces are timten
account because the stability is determined by the rootsimha
ilar fourth order characteristic polynomial. In order tady this
case we consider separately the followmglimensional version
of the non-conservative system (8)

X+ (QG +0D)x+ (K +VN)x =0, (18)

where dot stands for the time differentiationc R™, and real
matrix K = KT corresponds to potential forces. Real matrices
D=DT, G=-GT, andN = —NT are related to dissipative
(damping), gyroscopic, and non-conservative positiooaty-
latory) forces with magnitudes controlled by scaling fast,

Q, andv respectively. Acirculatory system, to which the un-
damped Ziegler’'s pendulum is attributed [36, 53, 60], isaoixd
from (18) by neglecting velocity-dependent forces

X+ (K +VN)x =0, (19)

while a gyroscopicone has no damping and non-conservative
positional forces

%+ QGX+Kx = 0. (20)

Circulatory and gyroscopic systems (19) and (20) possass fu
damental reversible and Hamiltonian symmetries, respsgti
which implies that ifA is an eigenvalue then so-is\ [4,7,52,53].
Therefore, an equilibrium of a circulatory or of a gyrosagys-
tem is either unstable or all its eigenvalues lie on the imauyi
axis of the complex plane, in the last case implying marggtes!
bility if they are semi-simple.

It is well known that in the Hamiltonian case, the transition
from gyroscopic stability to flutter instability occurs tugh the
interaction of simple pure imaginary eigenvalues with thp@
site Krein signature known as the Krein collision or the Hami
tonian Hopf bifurcation [19, 48,51, 52]. The collision ocsat
the border of marginal stability, say & = Qg for (20), and it
yields a double pure imaginary eigenvalue with the Jordainch
of vectors, which splits into a a complex conjugate pair unde
destabilizing variation of the parame@r

Letiwyp be the double eigenvalue @t= Qg with the Jordan
chain of generalized eigenvectars u; [40]

(—100§ +i00Q0G +K)ug = 0,

(100§ +i00Q0G +K)uz = —(2iwol +QoG)up.  (21)

Then, the Krein collision in the gyroscopic system (20) is de
scribed by the following expressions

1

i0(Q) =iy £ipuy/Q— Qo+ 0(]Q — Qo|2),
u(Q) = Up£ipui/Q — Qo+0(|Q— Qol2),  (22)
where the real coefficieptis [40]
2 UTUO
l_12 _ Q)(z) 0 (23)

T Ot (20T i i T ey
Q¢ (wt] up — U] Kug — ipQg U] Gu — TJ Ug)
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with the bar over a symbol denoting complex conjugate.

Perturbing the system (20) by small damping and circulatory
forces yields an increment to a simple pure imaginary eigkmy
[36,40]

W?(Q)U" (Q)Du(Q)d—iwu" (Q)Nu(Q)v
U (Q)KU(Q) + i’ (Q)u(Q)

A=iw(Q) - +0(3,V).

(24)

With the expressions (22), equation (24) serves for the cal-
culation of the deviation from the imaginary axis of the eige-
ues that participated in the Krein collision in the preseoitihe
non-Hamiltonian perturbation that makes the merging of @sod
animperfectone [24].

SinceD andK are real symmetric matrices ahdis a real
skew-symmetric one, the first-order increment to the eigkeray
iw(Q) given by (24) is real-valued. Consequently, in the first
approximation ind andv, the simple eigenvaluex(Q) remains
on the imaginary axis, ¥ = y(Q)d, where

Q) =—-iw(Q 25
VQ) =~ @) oo (25)
With the expansions (22) the formula (25) reads
di F pucbv/Q — Qo
Q)= —(pxu/Q-Q , 26
where we defing, = —i _ET—EDUO and
¥ = %UONUO
d; = Re(W}Dug), dy = Im(T Du; —TJ Dup),
n; = IM@TINUg), n2=ReTINu; —TlNug).  (27)

From (26) it follows that in the vicinity ofy := v/d =y, the
limit of the critical value of the gyroscopic paramefey; of the
near-Hamiltonian system @&— 0 exceeds the threshold of gy-
roscopic stabilization determined by the Krein collisid®]

20y \2
NT(Y—Ys) > Q.

Qer(y) = Qo+
(V) = 00 {olord, —yorp — a2 ~

(28)

Substitutingy = vd in expression (28) yields a simple esti-
mate for the critical value of the gyroscopic paraméer(d,v)
that has a canonical form (3) and therefore describes the-Whi
ney’s umbrella surface in th®,v, Q)-space [40]

n2(v —y,8)2

Qcr(6,V) = Qo+ .
r(OV) = Q0+ (ot v — 02

(29)

In case oim= 2 Eq. (29) is transformed to [38—40]
Qi (3,v) = Qo+Q #(v— 3)?
cr\©, = 0 0 (Q)otrD)252 Y )

KD+ (Q¢% — w)trD
e 2Qo ’

(30)

wherewy = vdetk andQg = v/ —trK + 2v/detK in the assump-
tion that deK > 0 and tK < 0. Due to the singularity the
gyroscopic stabilization in the presence of dissipative aan-
conservative positional forces depends on the ratmd is thus
very sensitive to non-Hamiltonian perturbations. We wiglaliss
the gyroscopic stabilization in more detail in section 4.1.

We note that the sensitivity of simple eigenvalues of Hamil-
tonian and gyroscopic systems to dissipative perturbatweas
a subject of intensive investigations, see, e.g., MacK&], [5
Haller [19], and Bloch et al. [7]. They analyzed the movenant
simple eigenvalues in the limit of vanishing dissipatiortheiut
direct application, however, to the destabilization pasadnd
approximation of the singular stability boundary. Our cide
tions performed in this section use the ideas develope®@ir43]
that, however, can be traced back to the works of Andreichiko
and Yudovich [1] and Crandall [15].

We see that in Hamiltonian mechanics, the Hamiltonian-
Hopf bifurcation in which two pairs of complex conjugate &g
values approach the imaginary axis symmetrically from #fe |
and right, then merge in double purely imaginary eigenaéunel
separate along the imaginary axis (or the reverse) has epdim
sion one. In the general case of non-Hamiltonian vectordjeld
the occurrence of double imaginary eigenvalues has codiimen
three. The interface between these two cases possessehithe W
neys umbrella singularity; the Hamiltonian systems lie tm i
handle. Quoting Langford from his introductory paper [58k}
ing Hopf bifurcation, Hamiltonian mechanics and Whitneys-u
brella: ‘Hopf meets Hamilton under Whitney’s umbrella’, iah,
we add, was opened by Bottema.

3 PARAMETRIC RESONANCE IN SYSTEMS WITH

DISSIPATION.

Parametric resonance arises usually in applications if we
have an independent (periodic) source of energy. The chlssi
example is the mathematical pendulum with oscillating supp
and a typical equation studied in this context is the Matkigua-
tion: X+ (w? +ecosvt)x = 0. In the case of this equation, basic
guestions are: for which values of the parametersv is the
trivial solutionx = x = 0 stable or unstable? Another basic ques-
tion is, what happens on adding damping effects? In the yheor
certain resonance relations between the frequencéxiv play
a crucial part. See for instance [4], [8], [62], [74] or [7 HidaFig.
5(a) for this classical case.
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In applications with parametric excitation where usually
more degrees of freedom play a part, many combination reso-
nances are possible. For a number of interesting caseysanal
and more references see [8,62]. In what follows, the sedall
sum resonance will be important.

First we will consider the general procedure for systemb wit
this combination resonance, after which we will discuss g a
plication.

3.1 NORMALIZATION OF OSCILLATORS
RESONANCE

In [26] a geometrical explanation is presented for damping
induced instability in parametric systems using ‘all’ trergme-
ters of the system as unfolding parameters. It will turn bat,t
using symmetry and normalization, four parameters areeted
to give a complete description in a two degrees of freedom sys
tem, or more generally systems where three frequenciesare i
resonance, but three parameters suffice to visualize thegisin.
Consider the following type of nonlinear differential etjoa
with three frequencies

IN SUM

X = Ax +&f(x, wot), x € R, (31)

which describes for instance a system of two parametrically
forced coupled oscillators. Her® is a 4x 4 matrix, contain-

ing a number of parameters, with purely imaginary eigeraslu
+iw and+iwy. Assume thaf is semi-simple, so, if necessary,
we can putA into diagonal form. The vector valued function

f contains both linear and nonlinear terms andrisp2riodic in
wot, f(0,00t) = 0 for allt. Eqg. (31) can be resonant in many
different ways, but as announced, we consider the sum reso-
nancew; + wy = wp, where the system may exhibit instability.
The parameted is used to control the detuningy = (1,02)

of the frequenciegwi,wy) near resonance and the parameter
K= (W, 2) derives from the damping coefficients. So we may
putA = A(3,u). We summarize the analysis from [26].

The basic approach will be to put eq. (31) into normal form
by normalization or averaging whereas the theory from [3] wi
play a part. In the normalized equation the time-dependence
removed from lower order and appears only in the higher order
terms. It turns out that the autonomous, linear part of thise
tion contains already enough information to determine thlils
ity regions of small amplitude oscillations near the origirhe
linear part of the normal form can be writtenzas A (9, )z with

aa

AW = (B( E(g,m)’ B(a’“):( —iesz—uz)'
(32)

SinceA(d, ) is the complexification of a real matrix, it com-
mutes with complex conjugation. Furthermore, accordintpéo
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Figure 3. The critical surface in (4, 1, 0. ) space for Eq. (31). [t =
M+ M2, Lo = g — M2, 04 = 01 + 0. Only the part )y > 0 and
0, > 0is shown. The parameters 01,0y control the detuning of the
frequencies, the parameters |y, 2 the damping of the oscillators (vertical
direction). The base of the umbrella lies along the 0. -axis.

normalization described in [4], [28] and [59] anduf andw, are
independent over the integers, the normal form of eq. (3%) ha
a continuous symmetry group. The second step is then to te
the linear partA (3, ) of the normalized equation for structural
stability i.e. to answer the question whether there exisnagets

in parameter space where the dynamics is qualitativelyahmees
The analysis follows [3] and [4]. The family of matricAg06, L)

is parameterized by the detunid@nd the damping. The pro-
cedure is to identify the most degenerate menhbef this fam-

ily, which turns out to bé\ (,0) and then show tha (3, ) is its
versal unfolding in the sense of [4]. The fam#y(d, ) is equiv-
alent to a versal unfolding of the degenerate menhbefor de-
tails we refer again to [26, 71], an explicit example is d&gad

in the next subsection.

We can put the conclusions in a different way: the family
A(d, ) is structurally stable fod, 1 > 0, wherea#\(d,0) is not.
This has interesting consequences in applications as daralp-
ing and zero damping may exhibit very different behavior. In
parameter space, the stability regions of the trivial $sofutire
separated by aritical surfacewhich is the hypersurface where
A(d,u) has at least one pair of purely imaginary complex con-
jugate eigenvalues. As before, this critical surface igedihor-
phic to theWhitney umbrellasee Fig. 3. It is the singularity
of the Whitney umbrella that causes the discontinuous hehav
displayed in the stability diagram in the next subsectiome T
structural stability argument guarantees that the reandtsuni-
versally valid’, i.e. they qualitatively hold for generiggems in
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equations. Abbreviatin@(t) = 4n?cost, the corresponding

disk Lo
Hamiltonian is:

H= :—L(1+02+£P(t))x2+ %pﬁ

RN

1
+ §(1+02+8P(t))y2+ §p§+axpy—aypx, (34)

where py, py are the momenta. The natural frequencies of the
unperturbed system (33)= 0, arew; = va2+ 1+a andw, =
va24+1—a. By puttingz = x+ iy, system (33) can be written
as:

N

u

¥
/ 7—20iz+ (1+4encos ht)z= 0. (35)
X

Introducing the new variabler= e 1%z, and rescaling timgt =
T, we obtain:

Figure 4. Rotor with diskmass M, elastically mounted with axial (U) and
lateral directions.

1402
\//+< :2 +4scos?r)v:0, (36)
sum resonance.

Above we have described the basic normalization approach,
but if we are interested only in the shape of the resonanstafin
bility) tongues, there are faster methods. For instanagguie

Poincaré-Linstedt method, see [71].

where the prime denotes differentiation with respect.t@By
writing down the real and imaginary parts of this equatioe, w
have actually got two identical Mathieu equations.

Using the classical and well-known results on the Math-
ieu equation, we conclude that the trivial solution is stafolr
3.2 ROTOR DYNAMICS WITHOUT DAMPING € small enough, provided that1+ a2 is not close tonn , for

The effects of adding linear damping to a parametrically ex- n= 1,2, 3,.... The first-order and most prominent interval of in-
cited system have already been observed and described in forstability,n = 1, arises if:
instance [8], [74], [66], or [62]. The following example isged

on [56]. —

Consider a rigid rotor consisting of a heavy disk of miks 1+az~n. (37)
which is rotating with constant rotation spe@daround an axis.
The axis of rotation is elastically mounted on a foundatibe; If condition (37) is satisfied, the trivial solution of eqigat (36)
connections which are holding the rotor in an upright positi is unstable. Therefore, the trivial solution of system (83lso
are also elastic. To describe the position of the rotor we lilag unstable. Note that this instability arises when: + w, = 2n,
axial displacement in the vertical direction (positive upwards), i.e. when the sum of the eigenfrequencies of the unperturbe
the angle of the axis of rotatiorwith respect tahe z-axis and system equals the excitation frequengy\hich is the sum res-

aroundthe z-axis. Instead of these two angles we will use the onance of first order. The domain of instability is bounded by
projection of the center of gravity motion on the horizoriay)-
plane, see Fig. 4. Assuming small oscillations in the ugrfgh — 2
position, frequency2, the equations of motion without damping Nb= V1402 (1+e)+0(e) . (38)
become after rescaling:

See Fig. 5(b) where the V-shaped instability domain is priesk

S 20y + (1+4sr]2c032]t)x —0, in the.case of rotor rotaf[iorw.((;é 0) without damping. o
. : 2 Higher order combination resonances can be studied in th
y—2ax+(1+4en“cosAt)y = 0. (33) same way; the domains of instability in parameter spaceroost
to narrow as increases. As noted the parameteis propor-
The parameteu is proportional to the rotation spe€d System tional to the rotation speed of the disk and also to the ratio of
(33) constitutes a conservative system of coupled Matlilkeu- the moments of inertia.
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3.3 ROTOR DYNAMICS WITH DAMPING
We add small linear damping to system (33), with positive
damping parametgr= 2¢k. This leads to the equations:

%+ 20y + (1+ 4en?cos Nt)x + 2ekx = 0,

y— 20%+ (1+4en2cos t)y + 2eky = 0. (39)
and using the complex variabte
z—20iz+ (1+4en®cost) z-+ 2ekz=0. (40)

Because of the damping term, we can no longer reduce the
complex eq. (40) to two identical second order real equatias
we did previously.

In the sum resonance of the first order, we haye- wp, ~
2n and the solution of the unperturbégl= 0) equation can be
written as:

2(t) = € 4 26 7z 5 €C, (41)

withw = Vo2 +14+0a, wp=+va2+1—a.

Applying variation of constants leads to equationsQws:

i€ ;
hjz = 2K (i 21 — iwpzpe (1ot
[hlz, u)1+(o2( (iwmz — iz )+
4nZcost(z + ze(@rteRlty),
70 = ——(2K(itnz €2 _juyzy) +

w1 + 0

4n?cost(z €@t 4 7)), (42)

To calculate the instability interval around the valyg=
(w1 + op) = VaZ+1, we apply normal form or (periodic so-
lution) perturbation theory, see [56] for details, to find the
stability boundary:

2
Np = V1+a2 <1is,/1+a2—%+....> ,
0

=V1+a? 11\/(1+0(2)£2— ( >2+....

It follows that, as in other examples we have seen, the do-
main of instability actually becoméarger when damping is in-
troduced. See Fig. 5.

The instability interval, shows a discontinuityrat= 0.

K

o (43)

10

instability domain o=0 a>0

€ with damping no rotation €

n=l-e

instability domain rotation

with damping

n=l+e

_ .- instability without
damping
instability without

damping "7~

n, b) Mo

Figure 5. (a) The classical case as we find for instance for the mathieu
equation with and without damping; in the case of damping the instabil-
ity tongue is lifted off from the N-axis and the instability domain is re-
duced. (b) The instability tongues for the rotor system. again, because of
damping the instability tongue is lifted off from the N-axis, but the tongue
broadens. The V -shaped tongue without damping is to first approximation

described by the expression N = v/1+a2(1+¢€),no = v1+ 02

If K — 0, then the boundaries of the instability domain tend
to the limitsn, — v/1+ a2(14+ev/1+ o2) which differs from the
result we found wher =0: np = vV1+ 02(1+¢). For reasons
of comparison, we display the instability tongues in Fign Bhe
four cases with and without rotation, with and without dangpi

Mathematically, the bifurcational behavior is again de-
scribed by the Whitney umbrella as indicated in subsectién 3
In mechanical terms, the broadening of the instability-dom
is caused by the coupling between the two degrees of freedol
of the rotor in lateral directions which arises in the preseaf
damping.

4 DESTABILIZATION PARADOX IN APPLICATIONS
In this section we discuss additional applications, both
finite- and infinite-dimensional.

4.1 GYROSCOPIC SYSTEMS OF ROTOR DYNAMICS

Investigation of the stability of equilibria of the Hauger’
[20] and Crandall’s [15, 57] gyropendulums as well as of the
Tippe Top [12,45] and the Rising Egg [12] leads to the systen
of linear equations known as the modified Maxwell-Bloch equa
tions [7].

The modified Maxwell-Bloch equations are the normal form
for rotationally symmetric, planar dynamical systems [Z].1
They follow from the equation (18) fan=2,D =1, andK =klI,
wherek corresponds to potential forces, and thus can be writte!
as a single differential equation with complex coefficients

X+IiQX+ X+ ivX+KX=0, X=X1—iX. (44)

The solutionx = 0 of equation (44) is asymptotically stable if
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and only if

v o
- — —K.
v

0>0, Q
>0, Q><

(45)

Fork > 0 the domain of asymptotic stability is a dihedral an-
gle with theQ-axis serving as its edge, Fig. 6(b). Its sections by
the plane€) = constare contained in the angle-shaped regions
with the boundaries

. §2j:\/£22—|—4|<6

- (46)

At Q = 0 the angle is bounded by the lines= +£8,/k and thus

it is less tharmt. The domain of asymptotic stability is twisting
around theQ-axis in such a manner that it always remains in
the half-spac® > 0, Fig. 6(b). Consequently, the system that
is statically stable a@ = 0 andd > 0 can become unstable at
greaterQ in the presence of non-conservative positional forces,
as shown in Fig. 6(b) by the dashed line. The larger magrstude
of circulatory forces, the lowdf)| at the onset of instability. This

is a typical example oflissipation-induced instabilities the
sense of [7,44—46] when only non-Hamiltonian perturbaticem
cause the destabilizing movements of eigenvalues with itkefin
Krein signature [42].

Figure 6.

(a) Hauger's gyropendulum; (b) dissipation-induced destabi-
lization of its statically stable equilibrium (K > 0) in the presence of cir-
culatory forces; (c) singular domain of gyroscopic stabilization of its stat-
ically unstable equilibrium (K < O) In the presence of non-hamiltonian
perturbations yields the destabilization paradox.

at greaterQ in the presence of circulatory forces, as shown in
Fig. 6(c) by the dashed line.

As a mechanical example we consider Hauger’s gyropendt
lum [20], which is an axisymmetric rigid body of masehinged
at the pointO on the axis of symmetry as shown in Fig. (6)(a).
The body’s moment of inertia with respect to the axis throtingh
pointO perpendicular to the axis of symmetry is denoted liie
body’s moment of inertia with respect to the axis of symmetry
denoted bylg, and the distance between the fastening point an
the center of mass & The orientation of the pendulum, which is
associated with the trihedrddx; yszs, with respect to the fixed
trihedronOxy;z is specified by the anglef, 8, and@. The pen-
dulum experiences the force of gravi®y/= mgand a follower
torqueT that lies in the plane of thg andzs coordinate axes.
The moment vector makes an anglejof with the axisz, where
n is a parametem(# 1) anda is the angle between tleeandz;
axes. Additionally, the pendulum experiences the regijelas-
tic momentR = —ra in the hinge and the dissipative moments
B = —bws andK = —k¢, wherews is the angular velocity of an
auxiliary coordinate syste@xsyszs with respect to the inertial
system and, b, andk are the corresponding coefficients.

Linearization of the nonlinear equations of motion deriwed
[20] with the new variables; = Y andx, = 6 and the subsequent
nondimensionalization yield the Maxwell-Bloch equatidAg)
where the dimensionless parameters are given by

b
I lw’

r—mgsv_l—r]
lo? 7 WP

K= T, w:—%. a7)

The domain of asymptotic stability of the Hauger gyropendul
given by (45), is shown in Fig. 6(b,c).

For the statically unstable gyropenduldrm< 0) the singu-
lar points on the-axis correspond to the critical valuge€)y =
+2./—K and the critical frequenayyy = /—K. Using the results
of the section 2 we find approximations of the stability boanyd
near the Whitney umbrella singularities [40]

1 (VFS/K)?
N

Qcr(v,8) = +2/—K £ (48)

As Kk > 0 decreases, the hypersurfaces forming the dihedral Thus, Hauger's gyropendulum, which is statically unstadtle

angle approach each other so thatkat 0, they temporarily
merge along the lin@ = 0 and a new configuration originates
for K < 0, Fig. 6(c). The new domain of asymptotic stability
consists of two disjoint parts that are pockets of two Whjtne
umbrellas singled out by inequality> 0. The absolute values
of the gyroscopic paramet€rin the stability domain are always
not less thaf)y = 2/—K. As a consequence, the system that
is statically unstable & = 0 can become asymptotically stable

11

Q = 0, can become asymptotically stable for sufficiently large
|Q| > Qp under a suitable distribution of dissipative and noncon-
servative positional forces. For almost all combinatioh and

v the onset of gyroscopic stabilization of the non-conséreat
system is greater than that of a pure gyroscopic one (déztabi
tion paradox: Q¢ (v,0) > Qp). The obtained results are valid
also for the equilibria of Tippe Top, Rising Egg, and Cratislal
gyropendulum [38, 39].
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4.2 CIRCULATORY SYSTEMS OF ROTOR DYNAMICS

In some rotor dynamics applications gyroscopic effects are
neglected [30, 45]. For example, in the modeling of friction
induced oscillations in disc- and drum brakes, clutchescher
machinery the speed of rotation is assumed to be small. Tiéis f
quently yields the linearized equations of motion in tharfaf
a circulatory system with or without damping. In recent mede
the damping is included because it is believed that highisens
tivity of the squeal onset to the damping distribution migkt
responsible for the poor reproducibility of the laboraterperi-
ments with the squealing machinery.

Hoffmann and Gaul [24] studied a model of a mass slid-
ing over a conveyor belt with friction and detected that $mal
damping in this circulatory system destroys the reverditdef
bifurcation and makes the collision of eigenvalues impefex-
actly as it happens with the eigenvalues of the Ziegler'sipen
lum [36,41].

In order to study squeal vibration in drum brakes Hultén
[27,63] introduced a model shown in Fig. 7(a). This model is
composed of a mas® held against a moving band; the con-

tact between the mass and the band is modeled by two plates

supported by two different springs. It is assumed that thesma

Figure 7.
ficient at the onset of flutter instability as a function of damping parame-
ters [63]; (c) a model of a disc brake [54]; (d) its critical friction coefficient

(a) A model of a drum brake [27]; (b) its critical friction coef-

as a function of damping parameters [41].

and band surfaces are always in contact. The contact can-be exity [41].

pressed by two cubic stiffnesses. Damping is integrated@srs
in Fig. 7(a). The friction coefficient at contact is assumedté

In both examples a selected distribution of damping exist:
that yields an increase in the critical load rather than efese

constant and the band moves at a constant velocity. Then it is {pt happens for all other distributions. This possibiliystabi-

assumed that the direction of friction force does not chdege
cause the relative velocity between the band speedkandx,

is assumed to be positive. The tangential fdfgalue to friction
contact is assumed to be proportional to the normal fékcas
given by Coulomb’s lawFr = pRy. Assuming the normal force
Fv is linearly related to the displacement of the mass normal to
the contact surface, the resulting equations of motion eaexb
pressed as

(s 0 Voo (e )

being exactly of the form considered by Bottema. Here the-rel
tive damping coefficients are denotediyy= ¢ /vmik; (i=1,2)
and natural pulsations arsy; = /ki/m (i = 1,2). Fig. 7(b)
shows the numerically calculated domain of asymptoticiktyab
of the drum brake in the space of the friction coefficigrand
two damping coefficientg; andn, with the Whitney umbrella
singularity [63].

In Fig. 7(c) a model of a disc brake proposed in [54] is
demonstrated. Its linearized equations of motion are abairof
a circulatory system with small damping. It is not surprgsihat
the critical friction coefficient at the onset of frictionduced vi-
brations as a function of two damping coefficients is repreg
in Fig. 7(d) by a surface with the Whitney umbrella singular-

12

lization was first pointed out in [61] for the Ziegler’s perhalon.
We will discuss this effect below in more detail.

4.3 INFINITE-DIMENSIONALSYSTEMS

4.3.1 NEAR-REVERSIBLE CASE: BECK'S COL-
UMN WITH EXTERNAL AND INTERNAL DAMPING
Dynamic instability, or flutter, is a general phenomenonchhi
commonly occurs in coupled fluid-structure systems inelgdi
pipes conveying fluids and airfoils [8, 22, 23]. Typicallfet
models are finite dimensional or continuous reversibleesyst
that demonstrate the destabilization paradox in the poeseh
damping. In a recent work [75] Ziegler’s paradox was obsgrve
in a problem of a vocal fold vibration (phonation) onset.

Beck’s column loaded by a follower force is a paradigmatic
model for studying dynamical instability of structures. 1969
Bolotin and Zhinzher [9] investigated the effects of dangpiiis-
tribution on its stability. They considered on the interxal [0, 1]
the non-self-adjoint boundary eigenvalue problem of thienfo

Lu := N(q)u+AD(dy,d2)u+A2Mu =0,

Uu = UN(q)u+)\UD(d1,d2)u+)\2UMu =0, (49)

where A is an eigenvalue with the eigenfunctiar(x) and
u= (U(O),aXU(O),a)Z(U(O),a)%U(O),U(l),axu(l),a)z(u(l),agu(l))-r
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The operators in the differential expression

N=0}+qd2 D=ddi+dal, M=1I (50)

depend on the magnitude of the follower logdnd the param-
eters of externakl,, and internal (Kelvin-Voight)d;, damping.
The matrices of b.c. in [9] ardp = 0,Uy =0, and

1000000
01000000
00000010)"°
0000O0O0O

Un = (51)

The undamped Beck’s column is stable ép gp ~ 20.05
[13]. Stability is lost atg > qo when after the reversible Hopf
bifurcation the double pure imaginary eigenvalug ~ 11.02
splits into a pair of complex eigenvalues. In [9] it was fouhdlt
in the presence of infinitesimally small Kelvin-Voight daimg
the critical load is reduced tq = g¢r ~ 10.94 and the critical
frequency drops to = wer ~ 5.40.

There were numerous attempts to find an approximation of
the new critical load by studying the splitting of the doubigen-
valueiuy of the unperturbed reversible system due to dissipative
perturbations [60]. Banichuk et al. [6] have emphasizedrthe
portance of degenerate perturbations, the linear part aftwik
in the tangent plane to the Whitney umbrella singularityvéte
theless, their analysis is not complete.

Further development of the approach of [6] in [33, 36, 37]
resulted in the approximation to the critical load in thenfior

() +HA.0)? 6By o

f(h,d)2 f (52)

Oer(d) = qo+

where the vector of the damping parametttgds,dy) and an-
gular brackets denote scalaerroducR'ﬁ The components of
the vectorf and the real scaldr are

aUN

r oN *\ /¥
f — (a—quo,vo) +V0V06—quo, r= 1, 27

K\ * ou
+VOVOa—d[r)Uo,

(53)

conditions [37]. The adjoint boundary value problems ane-co
nected by the Lagrange formula

(Lu,v) — (u,L*v) = (Vv)*Ou — (Vv)*Uu. (54)

Formula (52) can serve for the approximation of the jump in
the critical load. In the finite dimensional case with two ess
of freedom the expression for the limit of the critical loadluces
to (17) [36]. For the Beck column described by the equation:
(49) we calculate the critical load as [37]

190212
(14.34d; + 0.091d,)2

+12.68d;d2 4 0.053d3.

(55)

The form of the stability boundary with the Whitney umbrella
singularity approximated by equation (55) was confirmedrlat
by numerical computations in [29]. The limit in the critidahd
following from (55) agrees well with the numerical data of.[1

Structural mechanics also has examples of near-Hamittonia
continuous systems showing discontinuous changes indbé-st
ity domain. As a modern application we mention a moving bearr
with frictional contact investigated in [65]. Below we witbn-
sider an interesting example of the occurrence of the diligeab
tion paradox in fluid dynamics.

Ocr(d,d2) =o—

4.3.2 NEAR-HAMILTONIAN CASE: THE INSTABIL-
ITY OF BAROCLINIC ZONAL CURRENTS In the 1940s
the first studies appeared of instability of baroclinic Admeest-
east) currents in the Earth’s atmosphere [14, 16]. It is rkatde
that the unexpected destabilizing effect due to the intctido of
dissipation was discovered in the linear stability anadysithis
hydrodynamical problem by Holopainen (1961) [25] and Romee
(1977) [55] at the very same period of active research on th
destabilization paradox in structural mechanics. Regdhtse
studies were revisited by Krechetnikov and Marsden [46hwit
the aim to prove rigorously the dissipation-induced ingitgb

Romea considered an infinite channel in the periodic zona
directionx of width L in the meridional directiog that is rotating
with an angular velocit®. Two layers of incompressible, homo-
geneous fluids of slightly different densities (the lighftaid on
top) are confined by the side walls and by horizontal planes,
distanceD apart. For simplicity, it is assumed that, in the ab-
sence of motion, the interface is located halfway between th

with the asterisk denoting complex conjugate transpose and horizontal planes, and is flat so that centrifugal effecty foa

(u,v) = j‘olu(x)\ﬂx)dx The components of the vectbrand ma-
tricesH andG are defined analogously through the eigen- and
associated functiongy andu; corresponding to the eigenvalue
A =iwy [37]. The eigenfunctionsy andvy and the associated
functionsu; andv; of the original and adjoint eigenvalue prob-
lems are chosen to satisfy the bi-orthogonality and nozattin

13

ignored. Each layer moves downstream with a constant \gloci
and the slope of the interface is related to these velothesigh
the thermal wind relation. It is implicitly assumed thatstta-
sic state is maintained against dissipation by an extemeigy
source which is unimportant with respect to the rest of tlubdpr
lem [55]. The linearized equations for each layer near ttsicba
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state, which is the geostrophic streamfunctietyy and—Uoy,
are [46,55]

(8¢ +U10x) [0%01 + F (2 — 01)] + [B+ FUcJoxd1 = —r 0%,
(8¢ +U20x) [0%02+ F (91— 02)] + [B— FUcJoxd2 = —r %o

whereF is the internal rotational Froude number> O is the

measure of the effect of Ekman suction (Ekman layer dissipa-

tion), andp is the planetary vorticity factor introduced to take
into account the variation of the Coriolis parameter witiitlale
(B-effect).

Assuming the wave solutiong, ~ €90~ sin(mmy),
where reala > 0 is thex wavenumber, Romea obtained a dis-
persion relation for the complex phase speedc; + ic; in the
form of the second-order complex polynomial. The real pért o
c is the speed of propagation of the perturbation, whiég is
the growth rate of the wave. & > 0, the wave grows, and the
system is unstable.

In the inviscid case when the Ekman layer dissipation is set

to zero, the transition to instability occurs through theikrcol-
lision that occurs at); := U; — Uz = Uy, where [46, 55]

2BF

U= ————
T RVIF &

(56)

with a2 = a2 + mm@. The critical sheat), as a function of
the wavenumber is plotted in Fig. 8(left). This curve boutids
region of marginal stability of the system without dissipat

In the limit of vanishing viscosity(r — 0), the stability
boundary differs from (56)

2BF
Ur= .
R a(a®+F)v2F —a?

(57)

The discrepancy between the stability domains of viscouk an
inviscid systems is clearly seen in Fig. 8(left). Therefétemea
demonstrated that an introduction of infinitesimally snatdisi-
pation destabilizes the system, lowering the curve of nmalgi
stability by anO(1) amount. This is the appearance of the
destabilization paradox in a continuous near-Hamiltorsgs-
tem, which is similar to that found in near-reversible systdike
Ziegler's pendulum and Beck’s column with dissipation [8].6
Fig. 8(right) reproduces the original drawing from [55] slilog
the typical imperfect merging of modes [24] that subststtee
‘perfect’ Krein collision in near-Hamiltonian and neawegsible

aC;

r
Ueriral__IL— U
r ' Uer ¢

075 015 20
oY

Figure 8.
a discontinuous transition from the case when the ekman layer dissipation
r = Oinitially (Ug) to the case when r — 0 (UcRr) and (right) a typical
imperfect merging of modes (growth rates) [55] that substitutes the ‘per-
fect’ krein collision in near-hamiltonian and near-reversible systems and
is characteristic for the destabilization paradox [9].

(left) Critical shear as a function of wavenumber demonstrates
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