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ABSTRACT
The paradox of destabilization of a conservative or non-

conservative system by small dissipation, or Ziegler’s paradox
(1952), has stimulated an ever growing interest in the sensitivity
of reversible and Hamiltonian systems with respect to dissipa-
tive perturbations. Since the last decade it has been widelyac-
cepted that dissipation-induced instabilities are closely related
to singularities arising on the stability boundary. What isless
known is that the first complete explanation of Ziegler’s paradox
by means of the Whitney umbrella singularity dates back to 1956.
We revisit this undeservedly forgotten pioneering result by Oene
Bottema that outstripped later findings for about half a century.
We discuss subsequent developments of the perturbation analy-
sis of dissipation-induced instabilities and applications over this
period, involving structural stability of matrices, Kreincollision,
Hamilton-Hopf bifurcation and related bifurcations.

INTRODUCTION
‘Il n’y a de nouveau que ce qui est oublié’—this paraphrase

of the Ecclesiastes 1:10, attributed to Marie-Antoinette,perfectly
summarizes the story of the mathematical description of the
destabilizing effect of vanishing dissipation in non-conservative
systems.

There is a fascinating category of mechanical and physical
systems which exhibit the following paradoxical behavior:when
modeled as systems without damping they possess stable equi-

∗Address all correspondence to this author.

libria or stable steady motions, but when small damping is intro-
duced, some of these equilibria or steady motions become unsta-
ble.

The paradoxical effect of damping on dynamic instability
was noticed first for rotor systems which have stable steady mo-
tions for a certain range of speed, but which become unstable
when the speed is changed to a value outside the range.

In 1879 Thomson and Tait [67] showed that a statically un-
stable conservative system which has been stabilized by gyro-
scopic forces could be destabilized again by the introduction of
small damping forces. More generally, they consider conser-
vative and nonconservative linear two degrees of freedom sys-
tems in remarkable detail. The destabilization by damping,us-
ing Routh’s theorems, is implicit in their calculations, itis not
formulated as a paradox.

In 1924, to explain the destabilization of a flexible rotor
in stable rotation at a speed above the critical speed for reso-
nance, Kimball [32] introduced a damping of the rotation, which
has lead to non-conservative positional (circulatory) forces in the
equations of motion of a gyroscopic system. In 1933 Smith [64]
found that this non-conservative rotor system loses stability when

the speed of rotationΩ > ω
(

1+ δ
ν

)
, whereω is the undamped

natural whirling frequency (the critical speed for resonance) and
δ andν are the viscous damping constants for the stationary and
rotating damping mechanisms. In Smith’s model, the destabi-
lizing effect of the damping of rotation(ν), observed also by
Kapitsa [30], was compensated by the stationary damping(δ).
This was a first demonstration of a strong influence of the spatial
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distribution of damping (or equivalently the modal distribution)
on the borderlines between stability and instability domains in
multi-modal non-conservative systems [15].

In 1950s and 1960s the publications of Ziegler [76], Bolotin
[8, 9], and Herrmann [21, 22], motivated by aerospace applica-
tions, initiated a considerable activity in the investigation of dy-
namic instability of equilibrium configurations of structures un-
der non-conservative loads. The canonical problem was the flut-
ter of a vertical flexible cantilever column under a compressive
non-conservative or follower load which remains tangent tothe
bending column. In the flutter mode the tip of the column is pre-
ponderantly slanted toward the left during the half-cycle in which
the tip is moving toward the right and vice versa in the following
half-cycle. This snake-like oscillation permits the follower force
to do positive work on each cycle [15].

The strong influence of the spatial or modal distribution
of damping within the structure on its stability under non-
conservative loading, observed in these publications, should not
have been surprising in the light of earlier findings of rotordy-
namists. However, they revealed clearly the most dramatic and
paradoxical aspect of the sensitivity of the stability of the non-
conservative structures to small damping forces. It turnedout
that the critical load for a structure with small damping may
be considerably smaller than that for the same structure without
damping. In other words, there is a wide range of loads for which
the undamped structure is stable, but which produce instability as
soon as a tiny bit of damping is added to the structure.

These aspects were actively studied in the 1960’s to pro-
vide more basic understanding and they continued to be studied
with more sophisticated tools, including early attempts toem-
ploy singularity theory [69], until in the mid 1990s it was un-
derstood [26,61] that the destabilization paradox is related to the
Whitney umbrella singularity of the stability boundary [72, 73].
In the present article we make a sharp turn to the 1950s to re-
visit an article of Oene Bottema [11], then rector of the Technical
University of Delft, who in 1956 first made this discovery, which
surprisingly surpassed the attention of most scientists during five
decades.

In section 1 we will put these results in the context of singu-
larity theory, in sections 2 and 4 we show in various ways their
extension to finite- and infinite-dimensional systems usingper-
turbation theory of multiple eigenvalues, in section 3 we consider
periodic systems, and in the remainder we discuss applications in
physics and engineering.

WHITNEY’S UMBRELLA
In a remarkable paper of 1943 [72], Hassler Whitney de-

scribed singularities of maps of a differentialn-manifold intoEm

with m = 2n− 1. It turns out that in this case a special kind
of singularity plays a prominent role. Later, the local geomet-
ric structure of the manifold near the singularity has been aptly

called ‘Whitney’s umbrella’ [73].
The paper contains two main theorems. Consider theCk map

f : En 7→ Em with m= 2n−1.

1. The mapf can be altered slightly, formingf ∗, for which
the singular points are isolated. For each such an isolated
singular pointp, a technical regularity conditionC is valid
which relates to the mapf ∗ of the independent vectors near
p and of the differentials, the vectors in tangent space.

2. Consider the mapf ∗ which satisfies conditionC. Then we
can choose coordinatesx = (x1,x2, · · · ,xn) in a neighbor-
hood of p and coordinatesy = (y1,y2, · · · ,ym) (with m =
2n−1) in a neighborhood ofy = f (p) such that in a neigh-
borhood off ∗(p) we have exactly

y1 = x2
1, yi = xi , yn+i−1 = x1xi , (1)

wherei = 2, · · · ,n.

If for instancen = 2, m= 3, we have near the origin

y1 = x2
1, y2 = x2, y3 = x1x2, (2)

so thaty1 ≥ 0 and on eliminatingx1 andx2:

y1y2
2−y2

3 = 0. (3)

Starting on they2-axis for y1 = y3 = 0, the surface widens up
for increasing values ofy1. For eachy2, the cross-section is a
parabola; asy2 passes through 0, the parabola degenerates to a
half-ray, and opens out again (with sense reversed).

Note that because of theCk assumption for the differentiable
map f , the analysis is delicate. There is a considerable simplifi-
cation of the treatment if the map is analytical.

The analysis of singularities of functions and maps is a fun-
damental ingredient for bifurcation studies of differential equa-
tions. After the pioneering work of Hassler Whitney and Marston
Morse, it has become a huge research field, both in theoretical
investigations and in applications. We can not even presenta
summary of this field here, so we restrict ourselves to citinga
number of survey texts and discussing a few key concepts and ex-
amples. In particular we mention [3], [17], [18], [4], [2] and [5].
A monograph relating bifurcation theory with normal forms and
numerics is [47].

The relation between singularities of functions and critical
points or equilibria of differential equations becomes clear when
considering Hamiltonian and gradient systems. Consider for in-
stance the time-independent Hamiltonian functionH(p,q) with
p,q ∈ Rn. Singularities of the functionH are found in the set
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R2n where

∂H
∂p

=
∂H
∂q

= 0.

These points correspond with the critical points (equilibria) of
the Hamiltonian equations of motion

ṗ =
∂H
∂q

, q̇ = −∂H
∂p

.

More in general, consider the dynamical system described bythe
autonomous ODE

ẋ = f(x), x ∈ R
n, f : R

n 7→ R
n.

An equilibriumx0 of the system arises iff(x0) = 0. With a little
smoothness of the mapf we can linearize nearx0 so that we can
write ẋ = A(x−x0)+g(x) with A a constantn×n−matrix,g(x)
contains higher-order terms only.

The properties of the matrixA determine in a large num-
ber of cases the behavior of the dynamical system. In a seminal
paper [3], Arnold considers families of matrices, smoothlyde-
pending on a number of parameters (denoted by vectorp). So,
for the constantn× n− matrix we writeAp. Suppose that for
p = 0, A0 is in Jordan normal form. Choosingp in a neighbor-
hood ofp = 0 produces adeformation(or perturbation) ofA0,
assuming that nearp = 0 the entries ofAp can be expanded in
a convergent power series in the parameters. A deformation is
versal if all other deformations nearp = 0 are equivalent under
smooth change of parameters.

The paper [3] uses normal forms to obtain suitable versal
deformations. These are associated with the bifurcations of the
linearized system. Note that although a matrix induces a linear
map, the corresponding eigenvalue problem produces nonlinear
characteristic equations. In addition, the parameters involved,
make it necessary to analyze maps ofR

n into R
m. For instance

in the following sections we meet with maps fromR2 into R3 as
studied by Whitney [72]. Nevertheless, in 1943 it was hard to
imagine that this work of global analysis, a pure mathematical
abstraction, would find an industrial application already in the
next decade.

ZIEGLER’S PARADOX
In 1952 Hans Ziegler of ETH Zurich published a paper [76]

that became classical and widely known in the community of
mechanical engineers; it also attracted the attention of mathe-
maticians. Studying a simplified two-dimensional model of an
elastic rod fixed at one end and compressed by a tangential end

load, he unexpectedly encountered a phenomenon which shows
a paradoxal character: the domain of stability of the Ziegler’s
pendulum changes in a discontinuous way when one passes from
the case in which the damping is very small to that where it has
vanished [76].

Figure 1. (a) Ziegler’s pendulum, (b) (bold line) Stability interval of the

undamped pendulum and (shaded area) the domain of asymptotic stabil-

ity of the damped one [76].

Ziegler’s double pendulum presented in Fig. 1(a) consists
of two rigid rods of lengthl each, whose inclinations with re-
spect to the vertical are denoted asϕ1 andϕ2. Two massesm1

andm2 with the weightsG1 andG2 are concentrated at the dis-
tancesa1 anda2 from the joints. The elastic restoring torques
and the damping torques at the joints arecϕ1, c(ϕ2 − ϕ1) and
b1ϕ̇1, b2(ϕ̇2− ϕ̇1), respectively. AssumingG1 = 0 andG2 = 0
for simplicity, we find the Lagrange’s equations of motion

(
m1a2

1 +m2l2 m2la2

m2la2 m2a2
2

)(
ϕ̈1

ϕ̈2

)
+ (4)

(
b1 +b2 −b2

−b2 b2

)(
ϕ̇1

ϕ̇2

)
+

(
−Pl +2c Pl−c

−c c

)(
ϕ1

ϕ2

)
= 0.

With the substitutionϕi = Aiexp(λt) equation (4) yields a 4-
dimensional eigenvalue problem with respect to the spectral pa-
rameterλ.

Putting m1 = 2m, m2 = m, a1 = a2 = l , b1 = b2 = b and
assuming that dissipation is absent(b = 0), Ziegler found from
the characteristic equation that the vertical equilibriumposition
of the pendulum loses its stability when the magnitude of the
follower force exceeds the critical valuePk, where

Pk =

(
7
2
−
√

2

)
c
l
≃ 2.086

c
l
. (5)

In the presence of damping(b > 0) the Routh-Hurwitz con-
dition yields the new critical follower load that depends onthe
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square of the damping coefficientb

Pk(b) =
41
28

c
l
+

1
2

b2

ml3
. (6)

Ziegler found that the domain of asymptotic stability for the
damped pendulum is given by the inequalitiesP < Pk(b) and
b > 0 and plotted it against the stability intervalP < Pk of the
undamped system, Fig. 1(b). Surprisingly, the limit of the criti-
cal loadPk(b) whenb tends to zero turned out to be significantly
lower than the critical load of the undamped system

P∗
k = lim

b→0
Pk(b) =

41
28

c
l
≃ 1.464

c
l

< Pk. (7)

Some authors considered different extensions of the
Ziegler’s model by adding a conservative load and by assum-
ing difference of the damping coefficients [9, 21, 33, 43, 68].
They established that the domain of instability for the undamped
Ziegler’s pendulum with the partially follower load extends in a
discontinuous manner in the presence of dissipation.

Ziegler drew attention both to the substantial decrease in the
critical load of the damped non-conservative system with vanish-
ingly small dissipation and to the high sensitivity of the critical
follower load with respect to the variation of the damping dis-
tribution. In the mechanical engineering literature thesetwo ef-
fects are called the Ziegler’s paradox of destabilization by small
damping.

In the conclusion to his classical book [8], Bolotin empha-
sized that the discrepancy between the stability domains ofun-
damped non-conservative systems and that of systems with in-
finitesimally small dissipation is a topic of the greatest theoret-
ical interest in stability theory. Encouraging further research of
the destabilization paradox, Bolotin was not aware that thecru-
cial ideas for its explanation were formulated as early as 1956.

1 BOTTEMA’S SOLUTION
In 1956, in the journal ‘Indagationes Mathematicae’, there

appeared an article by Oene Bottema [11], then Rector Magnifi-
cus of the Technical University of Delft, that outstripped later
findings for decades. Bottema’s work [10] can be seen as an in-
troduction, it was directly motivated by Ziegler’s paradox. How-
ever, instead of examining the particular model of Ziegler,he
studied in [11] a much more general class of non-conservative
systems.

Following [10, 11], we consider a holonomic scleronomic
linear system with two degrees of freedom, the coordinatesx and
y of which are chosen in such a way that the kinetic energy isT =
(ẋ2 + ẏ2)/2. Hence the Lagrange equations of small oscillations

near the equilibrium configurationx = y = 0 are as follows

ẍ+a11x+a12y+b11ẋ+b12ẏ = 0,

ÿ+a21x+a22y+b21ẋ+b22ẏ = 0, (8)

whereai j andbi j are constants,A := (ai j ) is the matrix of the
forces depending on the coordinates,B := (bi j ) that of those de-
pending on the velocities. IfA is symmetrical while disregarding
the damping associated with the matrixB, there exists a poten-
tial energy functionV = (a11x2 + 2a12xy+ a22y2)/2, if it is an-
tisymmetrical, the forces are circulatory. When the matrixB is
symmetrical, we have a non-gyroscopic damping force, whichis
positive when the dissipative function(b11x2+2b12xy+b22y2)/2
is positive definite. IfB is antisymmetrical the forces depending
on the velocities are purely gyroscopic.

The matricesA andB can both be written uniquely as the
sum of symmetrical and antisymmetrical parts:A = K + N and
B = D+ G, whereN = νJ, G = ΩJ

K =

(
k11 k12

k21 k22

)
, D =

(
d11 d12

d21 d22

)
, J =

(
0 1

−1 0

)
, (9)

with k11 = a11, k22 = a22, k12 = k21 = (a12+a21)/2, ν = (a12−
a21)/2 andd11 = b11, d22 = b22, d12 = d21 = (b12+b21)/2, Ω =
(b12−b21)/2.

The system (9) has a potential energy function (disregarding
damping) whenν = 0, it is purely circulatory fork11 = k12 =
k22 = 0, it is non-gyroscopic forΩ = 0, and has no damping
whend11 = d12 = d22 = 0. If damping exists, we suppose in this
section that it is positive.

In order to solve the equations (9) we putx = C1exp(λt),
y = C2exp(λt) and obtain the characteristic equation for the fre-
quencies of the small oscillations around equilibrium [33,34,39]

Q := λ4 +a1λ3 +a2λ2 +a3λ +a4 = 0, (10)

with

a1 = trD, a2 = trK +detD+ Ω2,

a3 = trKtrD− trKD+2Ων, a4 = detK + ν2. (11)

Bottema found that all roots of (10) (assumed to be differ-
ent) have non-positive real parts if and only if one of the two
following sets of conditions is satisfied [11]

A : a1 > 0, a2 > 0, a3 > 0, a4 ≥ 0, a2 ≥
a2

1a4 +a2
3

a1a3
,

B : a1 = 0, a2 > 0, a3 = 0, a4 > 0, a2 > 2
√

a4. (12)
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One could expectB to be a limit ofA, so that fora1 → 0,
a3 → 0 the setA would continuously tend toB. That is not the
case. Remark first of all that the roots of (10) never have Reλ < 0
if a1 = 0,a3 6= 0 (ora1 6= 0,a3 = 0). Furthermore, ifA is satisfied
and we takea1 = εb1, a3 = εb3, whereb1 andb3 are fixed and
ε → 0, the last condition ofA reads(ε 6= 0)

a2 >
b2

1a4 +b2
3

b1b3
= g1

while forε = 0 we havea2 > 2
√

a4 = g2. Obviously we have [11]

g1−g2 =
(b1

√
a4−b3)

2

b1b3

so that(g1 > g2) but forb3 = b1
√

a4. That means that in all cases
whereb3 6= b1

√
a4 we have a discontinuity in our stability con-

dition. The phenomenon of the discontinuity Bottema illustrates
by a geometrical diagram, Fig. 2.

Following Bottema [11] we substitute in (10)λ = cµ, where
c is the positive fourth root ofa4 > 0. The new equation
readsP := µ4 + b1µ3 + b2µ2 + b3µ+ 1 = 0, wherebi = ai/ci

(i = 1,2,3,4). If we substituteai = cibi in A andB we get the
same condition as when we writebi for ai, which was to be ex-
pected, because if the roots of (10) are outsideR, those ofP = 0
are also outsideR and inversely. We can therefore restrict our-
selves to the casea4 = 1, so that we have only three parameters
a1, a2, a3. We take them as coordinates in an orthogonal coordi-
nate system.

The conditionH = 0 or

a1a2a3 = a2
1 +a2

3 (13)

is the equation of a surfaceV of the third degree, which we have
to consider fora1 ≥ 0, a3 ≥ 0, Fig. 2. ObviouslyV is a ruled
surface, the linea3 = ma1, a2 = m+ 1/m (0 < m < ∞) being
on V. The line is parallel to the 0a1a3-plane and intersects the
a2-axis in a1 = a3 = 0, a2 = m+ 1/m≥ 2. Thea2-axis is the
double line ofV, a2 > 2 being its active part. Two generators
pass through each point of it; they coincide fora2 = 2 (m= 1),
and fora2 →∞ their directions tend to those of thea1 anda3-axis
(m= 0,m= ∞). The conditionsA andB express that the image
point(a1,a2,a3) lies onV or aboveV. The point(0,2,0) is onV,
but if we go to thea2-axis along the linea3 = ma1 the coordinate
a2 has the limitm+1/m, which is> 2 but form= 1. Curiously
enough, even half a century later, there appear papers repeating
this reasoning and the result almost literally [58].

Note that we started off with 8 parameters in eq. (8), but
that the surfaceV bounding the stability domain is described by

Figure 2. The asymptotic stability domain of the system (8) with Whit-

ney’s umbrella singularity [11]. The ruled surface (called V in the text) is

given by (13)

3 parameters. It is described by a map ofE2 into E3 as in Whit-
ney’s papers [72, 73]. Explicitly, a transformation of (19)to (2)
is given bya1 = y3/2+ w, a2 = 2+ y2, a3 = −y3/2+ w with
w2 = 1

4y2
3 +y1y2.

Returning to the non-conservative system (8)(ν 6= 0), with
damping, but without gyroscopic forces, soΩ = 0, and assuming
as in [10] thatk12 = 0, k11 > 0, andk22 > 0 (similar setting but
with d12 = 0 andk12 6= 0 was considered later by Bolotin in [8]),
we find that the condition for stabilityH ≤ 0 when the damping
force decreases in a uniform way, so we putd11 = εd′

11, d12 =
εd′

12, d22 = εd′
22, whered11, d12, d22 are constants andε → 0,

reads

ν2 < ν2
cr :=

(k11−k22)
2

4
− (d′

11−d′
22)

2(k11−k22)
2

4(d′
11+d′

22)
2 . (14)

But if there is no damping, we have to make use of conditionB

ν2 < ν0
2 :=

(k11−k22)
2

4
=

(
trK
2

)2

−detK. (15)
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Obviously

ν0
2−ν2

cr =
(d′

11−d′
22)

2(k11−k22)
2

4(d′
11+d′

22)
2 =

[
2trKD− trKtrD

2trD

]2

≥ 0,

(16)
where the expressions written in terms of the invariants of the
matrices involved [39] are valid also without the restrictions on
the matricesD andK that were adopted in [8, 10]. For the val-
ues of 2trKD−trKtrD

2trD which are small with respect toν0 we can
approximately write [35,36]

νcr ≃ ν0−
1

2ν0

[
2trKD− trKtrD

2trD

]2

. (17)

If D depends on two parameters, sayδ1 andδ2, then (17) has a
canonical form (3) for the Whitney’s umbrella in the(δ1,δ2,ν)-
space. Due to discontinuity existing for 2trKD− trKtrD 6= 0 the
equilibrium may be stable if there is no damping, but unstable
if there is damping, however small it may be. We see also that
the critical non-conservative parameter,νcr, depends on the ratio
of the damping coefficients and thus is strongly sensitive tothe
distribution of damping similarly to how it happens in rotordy-
namics. This is the results which Ziegler [76] found in a special
case.

2 ‘HOPF MEETS HAMILTON UNDER WHITNEY’S UM-
BRELLA’
The title of this section derives from a nice paper by Lang-

ford [48]. As we have seen, Bottema was the first who estab-
lished that the asymptotic stability domain of a real polynomial
of fourth order in the space of its coefficients consists of one of
the ‘pockets’ of the Whitney umbrella. The corresponding singu-
larity was later identified as generic in the three parameterfami-
lies of real matrices by V.I. Arnold [3,4], who named it ‘deadlock
of an edge’. In this respect Bottema’s results in [11] can be seen
as an early study of bifurcations and structural stability of poly-
nomials and matrices, and therefore of the singularities oftheir
stability boundaries whose systematical treatment was initiated
since the beginning of 1970s in [3,4,49,50].

Although Bottema applied his result to nonconservative sys-
tems without gyroscopic forces, there are reasons for the singu-
larity to appear in the case when gyroscopic forces are takeninto
account because the stability is determined by the roots of asim-
ilar fourth order characteristic polynomial. In order to study this
case we consider separately the followingm-dimensional version
of the non-conservative system (8)

ẍ+(ΩG + δD)ẋ+(K + νN)x = 0, (18)

where dot stands for the time differentiation,x ∈ Rm, and real
matrix K = KT corresponds to potential forces. Real matrices
D = DT , G = −GT , and N = −NT are related to dissipative
(damping), gyroscopic, and non-conservative positional (circu-
latory) forces with magnitudes controlled by scaling factors δ,
Ω, andν respectively. Acirculatory system, to which the un-
damped Ziegler’s pendulum is attributed [36,53,60], is obtained
from (18) by neglecting velocity-dependent forces

ẍ+(K + νN)x = 0, (19)

while a gyroscopicone has no damping and non-conservative
positional forces

ẍ+ ΩGẋ+ Kx = 0. (20)

Circulatory and gyroscopic systems (19) and (20) possess fun-
damental reversible and Hamiltonian symmetries, respectively,
which implies that ifλ is an eigenvalue then so is−λ [4,7,52,53].
Therefore, an equilibrium of a circulatory or of a gyroscopic sys-
tem is either unstable or all its eigenvalues lie on the imaginary
axis of the complex plane, in the last case implying marginalsta-
bility if they are semi-simple.

It is well known that in the Hamiltonian case, the transition
from gyroscopic stability to flutter instability occurs through the
interaction of simple pure imaginary eigenvalues with the oppo-
site Krein signature known as the Krein collision or the Hamil-
tonian Hopf bifurcation [19, 48, 51, 52]. The collision occurs at
the border of marginal stability, say atΩ = Ω0 for (20), and it
yields a double pure imaginary eigenvalue with the Jordan chain
of vectors, which splits into a a complex conjugate pair under
destabilizing variation of the parameterΩ.

Let iω0 be the double eigenvalue atΩ = Ω0 with the Jordan
chain of generalized eigenvectorsu0, u1 [40]

(−Iω2
0 + iω0Ω0G + K)u0 = 0,

(−Iω2
0 + iω0Ω0G + K)u1 = −(2iω0I+ Ω0G)u0. (21)

Then, the Krein collision in the gyroscopic system (20) is de-
scribed by the following expressions

iω(Ω) = iω0± iµ
√

Ω−Ω0+o(|Ω−Ω0|
1
2 ),

u(Ω) = u0± iµu1

√
Ω−Ω0+o(|Ω−Ω0|

1
2 ), (22)

where the real coefficientµ is [40]

µ2 = − 2ω2
0uT

0 u0

Ω+
0 (ω2

0uT
1 u1−uT

1 Ku1− iω0Ω+
0 uT

1 Gu1−uT
0 u0)

(23)
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with the bar over a symbol denoting complex conjugate.
Perturbing the system (20) by small damping and circulatory

forces yields an increment to a simple pure imaginary eigenvalue
[36,40]

λ = iω(Ω)−ω2(Ω)uT(Ω)Du(Ω)δ− iωuT(Ω)Nu(Ω)ν
uT(Ω)Ku(Ω)+ ω2uT(Ω)u(Ω)

+o(δ,ν).

(24)
With the expressions (22), equation (24) serves for the cal-

culation of the deviation from the imaginary axis of the eigenval-
ues that participated in the Krein collision in the presenceof the
non-Hamiltonian perturbation that makes the merging of modes
an imperfectone [24].

SinceD andK are real symmetric matrices andN is a real
skew-symmetric one, the first-order increment to the eigenvalue
iω(Ω) given by (24) is real-valued. Consequently, in the first
approximation inδ andν, the simple eigenvalueiω(Ω) remains
on the imaginary axis, ifν = γ(Ω)δ, where

γ(Ω) = −iω(Ω)
uT(Ω)Du(Ω)

uT(Ω)Nu(Ω)
. (25)

With the expansions (22) the formula (25) reads

γ(Ω) = −(ω0±µ
√

Ω−Ω0)
d1∓µd2

√
Ω−Ω0

n1±µn2
√

Ω−Ω0
, (26)

where we defineγ∗ = −iω0
uT

0 Du0

uT
0 Nu0

and

d1 = Re(uT
0 Du0), d2 = Im(uT

0 Du1−uT
1 Du0),

n1 = Im(uT
0 Nu0), n2 = Re(uT

0 Nu1−uT
1 Nu0). (27)

From (26) it follows that in the vicinity ofγ := ν/δ = γ∗ the
limit of the critical value of the gyroscopic parameterΩcr of the
near-Hamiltonian system asδ → 0 exceeds the threshold of gy-
roscopic stabilization determined by the Krein collision [40]

Ωcr(γ) = Ω0 +
n2

1(γ− γ∗)2

µ2(ω0d2− γ∗n2−d1)2 ≥ Ω0. (28)

Substitutingγ = νδ in expression (28) yields a simple esti-
mate for the critical value of the gyroscopic parameterΩcr(δ,ν)
that has a canonical form (3) and therefore describes the Whit-
ney’s umbrella surface in the(δ,ν,Ω)-space [40]

Ωcr(δ,ν) = Ω0 +
n2

1(ν− γ∗δ)2

µ2(ω0d2− γ∗n2−d1)2δ2 . (29)

In case ofm= 2 Eq. (29) is transformed to [38–40]

Ωcr(δ,ν) = Ω0 + Ω0
2

(ω0trD)2δ2 (ν− γ∗δ)2,

γ∗ :=
trKD+(Ω0

2−ω2
0)trD

2Ω0
, (30)

whereω0 = 4
√

detK andΩ0 =
√
−trK +2

√
detK in the assump-

tion that detK > 0 and trK < 0. Due to the singularity the
gyroscopic stabilization in the presence of dissipative and non-
conservative positional forces depends on the ratioν

δ and is thus
very sensitive to non-Hamiltonian perturbations. We will discuss
the gyroscopic stabilization in more detail in section 4.1.

We note that the sensitivity of simple eigenvalues of Hamil-
tonian and gyroscopic systems to dissipative perturbations was
a subject of intensive investigations, see, e.g., MacKay [52],
Haller [19], and Bloch et al. [7]. They analyzed the movementof
simple eigenvalues in the limit of vanishing dissipation without
direct application, however, to the destabilization paradox and
approximation of the singular stability boundary. Our calcula-
tions performed in this section use the ideas developed in [38–40]
that, however, can be traced back to the works of Andreichikov
and Yudovich [1] and Crandall [15].

We see that in Hamiltonian mechanics, the Hamiltonian-
Hopf bifurcation in which two pairs of complex conjugate eigen-
values approach the imaginary axis symmetrically from the left
and right, then merge in double purely imaginary eigenvalues and
separate along the imaginary axis (or the reverse) has codimen-
sion one. In the general case of non-Hamiltonian vector fields,
the occurrence of double imaginary eigenvalues has codimension
three. The interface between these two cases possesses the Whit-
neys umbrella singularity; the Hamiltonian systems lie on its
handle. Quoting Langford from his introductory paper [55] link-
ing Hopf bifurcation, Hamiltonian mechanics and Whitneys um-
brella: ‘Hopf meets Hamilton under Whitney’s umbrella’, which,
we add, was opened by Bottema.

3 PARAMETRIC RESONANCE IN SYSTEMS WITH
DISSIPATION.
Parametric resonance arises usually in applications if we

have an independent (periodic) source of energy. The classical
example is the mathematical pendulum with oscillating support
and a typical equation studied in this context is the Mathieuequa-
tion: ẍ+(ω2 + εcosνt)x = 0. In the case of this equation, basic
questions are: for which values of the parametersω,ε,ν is the
trivial solutionx = ẋ = 0 stable or unstable? Another basic ques-
tion is, what happens on adding damping effects? In the theory,
certain resonance relations between the frequenciesω andν play
a crucial part. See for instance [4], [8], [62], [74] or [71] and Fig.
5(a) for this classical case.
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In applications with parametric excitation where usually
more degrees of freedom play a part, many combination reso-
nances are possible. For a number of interesting cases, analysis
and more references see [8, 62]. In what follows, the so-called
sum resonance will be important.

First we will consider the general procedure for systems with
this combination resonance, after which we will discuss an ap-
plication.

3.1 NORMALIZATION OF OSCILLATORS IN SUM
RESONANCE

In [26] a geometrical explanation is presented for damping
induced instability in parametric systems using ‘all’ the parame-
ters of the system as unfolding parameters. It will turn out that,
using symmetry and normalization, four parameters are needed
to give a complete description in a two degrees of freedom sys-
tem, or more generally systems where three frequencies are in
resonance, but three parameters suffice to visualize the situation.
Consider the following type of nonlinear differential equation
with three frequencies

ẋ = Ax + εf(x,ω0t), x ∈ R
4, (31)

which describes for instance a system of two parametrically
forced coupled oscillators. HereA is a 4× 4 matrix, contain-
ing a number of parameters, with purely imaginary eigenvalues
±iω1 and±iω2. Assume thatA is semi-simple, so, if necessary,
we can putA into diagonal form. The vector valued function
f contains both linear and nonlinear terms and is 2π-periodic in
ω0t, f(0,ω0t) = 0 for all t. Eq. (31) can be resonant in many
different ways, but as announced, we consider the sum reso-
nanceω1 + ω2 = ω0, where the system may exhibit instability.
The parameterδ is used to control the detuningδ = (δ1,δ2)
of the frequencies(ω1,ω2) near resonance and the parameter
µ = (µ1,µ2) derives from the damping coefficients. So we may
putA = A(δ,µ). We summarize the analysis from [26].

The basic approach will be to put eq. (31) into normal form
by normalization or averaging whereas the theory from [3] will
play a part. In the normalized equation the time-dependenceis
removed from lower order and appears only in the higher order
terms. It turns out that the autonomous, linear part of this equa-
tion contains already enough information to determine the stabil-
ity regions of small amplitude oscillations near the origin. The
linear part of the normal form can be written asż = A(δ,µ)z with

A(δ,µ)=

(
B(δ,µ) 0

0 B(δ,µ)

)
, B(δ,µ)=

(
iδ1−µ1 α1

α2 −iδ2−µ2

)
.

(32)
SinceA(δ,µ) is the complexification of a real matrix, it com-

mutes with complex conjugation. Furthermore, according tothe

Figure 3. The critical surface in (µ+,µ−,δ+) space for Eq. (31). µ+ =
µ1 + µ2, µ− = µ1 − µ2, δ+ = δ1 + δ2. Only the part µ+ > 0 and

δ+ > 0 is shown. The parameters δ1,δ2 control the detuning of the

frequencies, the parameters µ1,µ2 the damping of the oscillators (vertical

direction). The base of the umbrella lies along the δ+-axis.

normalization described in [4], [28] and [59] and ifω1 andω2 are
independent over the integers, the normal form of eq. (31) has
a continuous symmetry group. The second step is then to test
the linear partA(δ,µ) of the normalized equation for structural
stability i.e. to answer the question whether there exist open sets
in parameter space where the dynamics is qualitatively the same.
The analysis follows [3] and [4]. The family of matricesA(δ,µ)
is parameterized by the detuningδ and the dampingµ. The pro-
cedure is to identify the most degenerate memberN of this fam-
ily, which turns out to beA(δ,0) and then show thatA(δ,µ) is its
versal unfolding in the sense of [4]. The familyA(δ,µ) is equiv-
alent to a versal unfolding of the degenerate memberN. For de-
tails we refer again to [26, 71], an explicit example is discussed
in the next subsection.

We can put the conclusions in a different way: the family
A(δ,µ) is structurally stable forδ,µ > 0, whereasA(δ,0) is not.
This has interesting consequences in applications as smalldamp-
ing and zero damping may exhibit very different behavior. In
parameter space, the stability regions of the trivial solution are
separated by acritical surfacewhich is the hypersurface where
A(δ,µ) has at least one pair of purely imaginary complex con-
jugate eigenvalues. As before, this critical surface is diffeomor-
phic to theWhitney umbrella, see Fig. 3. It is the singularity
of the Whitney umbrella that causes the discontinuous behavior
displayed in the stability diagram in the next subsection. The
structural stability argument guarantees that the resultsare ‘uni-
versally valid’, i.e. they qualitatively hold for generic systems in
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Figure 4. Rotor with diskmass M, elastically mounted with axial (u) and

lateral directions.

sum resonance.
Above we have described the basic normalization approach,

but if we are interested only in the shape of the resonance (insta-
bility) tongues, there are faster methods. For instance using the
Poincaré-Linstedt method, see [71].

3.2 ROTOR DYNAMICS WITHOUT DAMPING
The effects of adding linear damping to a parametrically ex-

cited system have already been observed and described in for
instance [8], [74], [66], or [62]. The following example is based
on [56].

Consider a rigid rotor consisting of a heavy disk of massM
which is rotating with constant rotation speedΩ around an axis.
The axis of rotation is elastically mounted on a foundation;the
connections which are holding the rotor in an upright position
are also elastic. To describe the position of the rotor we have the
axial displacementu in the vertical direction (positive upwards),
the angle of the axis of rotationwith respect tothe z-axis and
around the z-axis. Instead of these two angles we will use the
projection of the center of gravity motion on the horizontal(x,y)-
plane, see Fig. 4. Assuming small oscillations in the upright (u)
position, frequency 2η, the equations of motion without damping
become after rescaling:

ẍ+2αẏ+(1+4εη2cos2ηt)x = 0,

ÿ−2αẋ+(1+4εη2cos2ηt)y = 0. (33)

The parameterα is proportional to the rotation speedΩ. System
(33) constitutes a conservative system of coupled Mathieu-like

equations. AbbreviatingP(t) = 4η2cos2ηt, the corresponding
Hamiltonian is:

H =
1
2
(1+ α2 + εP(t))x2 +

1
2

p2
x

+
1
2
(1+ α2 + εP(t))y2+

1
2

p2
y + αxpy−αypx, (34)

where px, py are the momenta. The natural frequencies of the
unperturbed system (33),ε = 0, areω1 =

√
α2 +1+α andω2 =√

α2 +1−α. By puttingz= x+ iy, system (33) can be written
as:

z̈−2αiż+(1+4εη2cos2ηt)z= 0. (35)

Introducing the new variable:v= e−iαtz, and rescaling timeηt =
τ, we obtain:

v′′ +

(
1+ α2

η2 +4εcos2τ
)

v = 0, (36)

where the prime denotes differentiation with respect toτ. By
writing down the real and imaginary parts of this equation, we
have actually got two identical Mathieu equations.

Using the classical and well-known results on the Math-
ieu equation, we conclude that the trivial solution is stable for
ε small enough, provided that

√
1+ α2 is not close tonη , for

n = 1,2,3, .... The first-order and most prominent interval of in-
stability,n = 1, arises if:

√
1+ α2 ≈ η. (37)

If condition (37) is satisfied, the trivial solution of equation (36)
is unstable. Therefore, the trivial solution of system (33)is also
unstable. Note that this instability arises when:ω1 + ω2 = 2η,
i.e. when the sum of the eigenfrequencies of the unperturbed
system equals the excitation frequency 2η which is the sum res-
onance of first order. The domain of instability is bounded by:

ηb =
√

1+ α2 (1± ε)+O(ε2) . (38)

See Fig. 5(b) where the V-shaped instability domain is presented
in the case of rotor rotation (α 6= 0) without damping.

Higher order combination resonances can be studied in the
same way; the domains of instability in parameter space continue
to narrow asn increases. As noted the parameterα is propor-
tional to the rotation speedΩ of the disk and also to the ratio of
the moments of inertia.
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3.3 ROTOR DYNAMICS WITH DAMPING
We add small linear damping to system (33), with positive

damping parameterµ= 2εκ. This leads to the equations:

ẍ+2αẏ+(1+4εη2cos2ηt)x+2εκẋ = 0,

ÿ−2αẋ+(1+4εη2cos2ηt)y+2εκẏ = 0. (39)

and using the complex variablez:

z̈−2αiż+
(
1+4εη2cos2ηt

)
z+2εκż= 0. (40)

Because of the damping term, we can no longer reduce the
complex eq. (40) to two identical second order real equations, as
we did previously.

In the sum resonance of the first order, we haveω1 + ω2 ≈
2η and the solution of the unperturbed(ε = 0) equation can be
written as:

z(t) = z1eiω1t +z2e−iω2t , z1,z2 ∈ C, (41)

with ω1 =
√

α2 +1+ α, ω2 =
√

α2 +1−α.
Applying variation of constants leads to equations forz1, z2:

[h]ż1 =
iε

ω1 + ω2
(2κ(iω1z1− iω2z2e−i(ω1+ω2)t)+

4η2cos2ηt(z1 +z2e−i(ω1+ω2)t)),

ż2 =
−iε

ω1 + ω2
(2κ(iω1z1ei(ω1+ω2)t − iω2z2)+

4η2cos2ηt(z1ei(ω1+ω2)t +z2)). (42)

To calculate the instability interval around the valueη0 =
1
2(ω1 + ω2) =

√
α2 +1, we apply normal form or (periodic so-

lution) perturbation theory, see [56] for details, to find for the
stability boundary:

ηb =
√

1+ α2

(
1± ε

√
1+ α2− κ2

η2
0

+ ....

)
,

=
√

1+ α2


1±

√

(1+ α2)ε2−
(

κ
2η0

)2

+ ....


 .(43)

It follows that, as in other examples we have seen, the do-
main of instability actually becomeslarger when damping is in-
troduced. See Fig. 5.

The instability interval, shows a discontinuity atκ = 0.

Figure 5. (a) The classical case as we find for instance for the mathieu

equation with and without damping; in the case of damping the instabil-

ity tongue is lifted off from the η-axis and the instability domain is re-

duced. (b) The instability tongues for the rotor system. again, because of

damping the instability tongue is lifted off from the η-axis, but the tongue

broadens. TheV-shaped tongue without damping is to first approximation

described by the expression η =
√

1+ α2(1± ε), η0 =
√

1+ α2.

If κ → 0, then the boundaries of the instability domain tend
to the limitsηb →

√
1+ α2(1±ε

√
1+ α2) which differs from the

result we found whenκ = 0 : ηb =
√

1+ α2(1± ε). For reasons
of comparison, we display the instability tongues in Fig. 5 in the
four cases with and without rotation, with and without damping.

Mathematically, the bifurcational behavior is again de-
scribed by the Whitney umbrella as indicated in subsection 3.1.
In mechanical terms, the broadening of the instability-domain
is caused by the coupling between the two degrees of freedom
of the rotor in lateral directions which arises in the presence of
damping.

4 DESTABILIZATION PARADOX IN APPLICATIONS
In this section we discuss additional applications, both

finite- and infinite-dimensional.

4.1 GYROSCOPIC SYSTEMS OF ROTOR DYNAMICS
Investigation of the stability of equilibria of the Hauger’s

[20] and Crandall’s [15, 57] gyropendulums as well as of the
Tippe Top [12, 45] and the Rising Egg [12] leads to the system
of linear equations known as the modified Maxwell-Bloch equa-
tions [7].

The modified Maxwell-Bloch equations are the normal form
for rotationally symmetric, planar dynamical systems [7, 12].
They follow from the equation (18) form= 2,D = I, andK = κI,
whereκ corresponds to potential forces, and thus can be written
as a single differential equation with complex coefficients

ẍ+ iΩẋ+ δẋ+ iνx+ κx= 0, x = x1− ix2. (44)

The solutionx = 0 of equation (44) is asymptotically stable if
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and only if

δ > 0, Ω >
ν
δ
− δ

ν
κ. (45)

Forκ > 0 the domain of asymptotic stability is a dihedral an-
gle with theΩ-axis serving as its edge, Fig. 6(b). Its sections by
the planesΩ = constare contained in the angle-shaped regions
with the boundaries

ν =
Ω±

√
Ω2 +4κ
2

δ. (46)

At Ω = 0 the angle is bounded by the linesν = ±δ
√

κ and thus
it is less thanπ. The domain of asymptotic stability is twisting
around theΩ-axis in such a manner that it always remains in
the half-spaceδ > 0, Fig. 6(b). Consequently, the system that
is statically stable atΩ = 0 andδ ≥ 0 can become unstable at
greaterΩ in the presence of non-conservative positional forces,
as shown in Fig. 6(b) by the dashed line. The larger magnitudes
of circulatory forces, the lower|Ω| at the onset of instability. This
is a typical example ofdissipation-induced instabilitiesin the
sense of [7,44–46] when only non-Hamiltonian perturbations can
cause the destabilizing movements of eigenvalues with definite
Krein signature [42].

Figure 6. (a) Hauger’s gyropendulum; (b) dissipation-induced destabi-

lization of its statically stable equilibrium (κ > 0) in the presence of cir-

culatory forces; (c) singular domain of gyroscopic stabilization of its stat-

ically unstable equilibrium (κ < 0) In the presence of non-hamiltonian

perturbations yields the destabilization paradox.

As κ > 0 decreases, the hypersurfaces forming the dihedral
angle approach each other so that, atκ = 0, they temporarily
merge along the lineν = 0 and a new configuration originates
for κ < 0, Fig. 6(c). The new domain of asymptotic stability
consists of two disjoint parts that are pockets of two Whitney’s
umbrellas singled out by inequalityδ > 0. The absolute values
of the gyroscopic parameterΩ in the stability domain are always
not less thanΩ0 = 2

√−κ. As a consequence, the system that
is statically unstable atΩ = 0 can become asymptotically stable

at greaterΩ in the presence of circulatory forces, as shown in
Fig. 6(c) by the dashed line.

As a mechanical example we consider Hauger’s gyropendu-
lum [20], which is an axisymmetric rigid body of massmhinged
at the pointO on the axis of symmetry as shown in Fig. (6)(a).
The body’s moment of inertia with respect to the axis throughthe
pointOperpendicular to the axis of symmetry is denoted byI , the
body’s moment of inertia with respect to the axis of symmetryis
denoted byI0, and the distance between the fastening point and
the center of mass iss. The orientation of the pendulum, which is
associated with the trihedronOxf yf zf , with respect to the fixed
trihedronOxiyizi is specified by the anglesψ, θ, andφ. The pen-
dulum experiences the force of gravityG = mg and a follower
torqueT that lies in the plane of thezi andzf coordinate axes.
The moment vector makes an angle ofηα with the axiszi , where
η is a parameter (η 6= 1) andα is the angle between thezi andzf

axes. Additionally, the pendulum experiences the restoring elas-
tic momentR = −rα in the hinge and the dissipative moments
B = −bωs andK = −kφ, whereωs is the angular velocity of an
auxiliary coordinate systemOxsyszs with respect to the inertial
system andr, b, andk are the corresponding coefficients.

Linearization of the nonlinear equations of motion derivedin
[20] with the new variablesx1 = ψ andx2 = θ and the subsequent
nondimensionalization yield the Maxwell-Bloch equations(44)
where the dimensionless parameters are given by

Ω =
I0
I

, δ =
b
Iω

, κ =
r −mgs

Iω2 , ν =
1−η
Iω2 T, ω = −T

k
. (47)

The domain of asymptotic stability of the Hauger gyropendulum,
given by (45), is shown in Fig. 6(b,c).

For the statically unstable gyropendulum(κ < 0) the singu-
lar points on theΩ-axis correspond to the critical values±Ω0 =
±2

√−κ and the critical frequencyω0 =
√−κ. Using the results

of the section 2 we find approximations of the stability boundary
near the Whitney umbrella singularities [40]

Ωcr(ν,δ) = ±2
√
−κ± 1√−κ

(ν∓ δ
√−κ)2

δ2 . (48)

Thus, Hauger’s gyropendulum, which is statically unstableat
Ω = 0, can become asymptotically stable for sufficiently large
|Ω| ≥ Ω0 under a suitable distribution of dissipative and noncon-
servative positional forces. For almost all combinations of δ and
ν the onset of gyroscopic stabilization of the non-conservative
system is greater than that of a pure gyroscopic one (destabiliza-
tion paradox:Ωcr(ν,δ) ≥ Ω0). The obtained results are valid
also for the equilibria of Tippe Top, Rising Egg, and Crandall’s
gyropendulum [38,39].
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4.2 CIRCULATORY SYSTEMS OF ROTOR DYNAMICS
In some rotor dynamics applications gyroscopic effects are

neglected [30, 45]. For example, in the modeling of friction-
induced oscillations in disc- and drum brakes, clutches andother
machinery the speed of rotation is assumed to be small. This fre-
quently yields the linearized equations of motion in the form of
a circulatory system with or without damping. In recent models
the damping is included because it is believed that high sensi-
tivity of the squeal onset to the damping distribution mightbe
responsible for the poor reproducibility of the laboratoryexperi-
ments with the squealing machinery.

Hoffmann and Gaul [24] studied a model of a mass slid-
ing over a conveyor belt with friction and detected that small
damping in this circulatory system destroys the reversibleHopf
bifurcation and makes the collision of eigenvalues imperfect, ex-
actly as it happens with the eigenvalues of the Ziegler’s pendu-
lum [36,41].

In order to study squeal vibration in drum brakes Hultén
[27, 63] introduced a model shown in Fig. 7(a). This model is
composed of a massm held against a moving band; the con-
tact between the mass and the band is modeled by two plates
supported by two different springs. It is assumed that the mass
and band surfaces are always in contact. The contact can be ex-
pressed by two cubic stiffnesses. Damping is integrated as shown
in Fig. 7(a). The friction coefficient at contact is assumed to be
constant and the band moves at a constant velocity. Then it is
assumed that the direction of friction force does not changebe-
cause the relative velocity between the band speed and ˙x1 or ẋ2

is assumed to be positive. The tangential forceFT due to friction
contact is assumed to be proportional to the normal forceFN as
given by Coulomb’s law:FT = µFN. Assuming the normal force
FN is linearly related to the displacement of the mass normal to
the contact surface, the resulting equations of motion can be ex-
pressed as

(
1 0
0 1

)
ẍ+

(
η1ω0,1 0

0 η2ω0,2

)
ẋ +

(
ω2

0,1 −µω2
0,2

µω2
0,1 ω2

0,2

)
x = 0,

being exactly of the form considered by Bottema. Here the rela-
tive damping coefficients are denoted byηi = ci/

√
miki (i = 1,2)

and natural pulsations areω0,i =
√

ki/mi (i = 1,2). Fig. 7(b)
shows the numerically calculated domain of asymptotic stability
of the drum brake in the space of the friction coefficientµ and
two damping coefficientsη1 andη2 with the Whitney umbrella
singularity [63].

In Fig. 7(c) a model of a disc brake proposed in [54] is
demonstrated. Its linearized equations of motion are againthat of
a circulatory system with small damping. It is not surprising that
the critical friction coefficient at the onset of friction-induced vi-
brations as a function of two damping coefficients is represented
in Fig. 7(d) by a surface with the Whitney umbrella singular-

Figure 7. (a) A model of a drum brake [27]; (b) its critical friction coef-

ficient at the onset of flutter instability as a function of damping parame-

ters [63]; (c) a model of a disc brake [54]; (d) its critical friction coefficient

as a function of damping parameters [41].

ity [41].
In both examples a selected distribution of damping exists

that yields an increase in the critical load rather than decrease
that happens for all other distributions. This possibilityfor stabi-
lization was first pointed out in [61] for the Ziegler’s pendulum.
We will discuss this effect below in more detail.

4.3 INFINITE-DIMENSIONALSYSTEMS
4.3.1 NEAR-REVERSIBLE CASE: BECK’S COL-

UMN WITH EXTERNAL AND INTERNAL DAMPING
Dynamic instability, or flutter, is a general phenomenon which
commonly occurs in coupled fluid-structure systems including
pipes conveying fluids and airfoils [8, 22, 23]. Typically, the
models are finite dimensional or continuous reversible systems
that demonstrate the destabilization paradox in the presence of
damping. In a recent work [75] Ziegler’s paradox was observed
in a problem of a vocal fold vibration (phonation) onset.

Beck’s column loaded by a follower force is a paradigmatic
model for studying dynamical instability of structures. In1969
Bolotin and Zhinzher [9] investigated the effects of damping dis-
tribution on its stability. They considered on the intervalx∈ [0,1]
the non-self-adjoint boundary eigenvalue problem of the form

Lu := N(q)u+ λD(d1,d2)u+ λ2Mu = 0,

Uu := UN(q)u+ λUD(d1,d2)u+ λ2UMu = 0, (49)

where λ is an eigenvalue with the eigenfunctionu(x) and
u = (u(0),∂xu(0),∂2

xu(0),∂3
xu(0),u(1),∂xu(1),∂2

xu(1),∂3
xu(1))T .
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The operators in the differential expression

N = ∂4
x +q∂2

x, D = d1∂4
x +d2I , M = I (50)

depend on the magnitude of the follower loadq and the param-
eters of external,d2, and internal (Kelvin-Voight),d1, damping.
The matrices of b.c. in [9] areUD = 0, UM = 0, and

UN =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


 . (51)

The undamped Beck’s column is stable forq < q0 ≃ 20.05
[13]. Stability is lost atq ≥ q0 when after the reversible Hopf
bifurcation the double pure imaginary eigenvalueiω0 ≃ 11.02
splits into a pair of complex eigenvalues. In [9] it was foundthat
in the presence of infinitesimally small Kelvin-Voight damping
the critical load is reduced toq = qcr ≃ 10.94 and the critical
frequency drops toω = ωcr ≃ 5.40.

There were numerous attempts to find an approximation of
the new critical load by studying the splitting of the doubleeigen-
valueiω0 of the unperturbed reversible system due to dissipative
perturbations [60]. Banichuk et al. [6] have emphasized theim-
portance of degenerate perturbations, the linear part of which is
in the tangent plane to the Whitney umbrella singularity. Never-
theless, their analysis is not complete.

Further development of the approach of [6] in [33, 36, 37]
resulted in the approximation to the critical load in the form

qcr(d) = q0 +
(〈f,d〉+〈Hd,d〉)2

f̃ 〈h,d〉2
− ω2

0

f̃
〈Gd,d〉, (52)

where the vector of the damping parametersd=(d1,d2) and an-
gular brackets denote scalar product inR

2. The components of
the vectorf and the real scalar̃f are

fr =

(
∂D
∂dr

u0,v0

)
+ v∗0Ṽ∗

0
∂UD

∂dr
u0,

f̃ =

(
∂N
∂q

u0,v0

)
+ v∗0Ṽ∗

0
∂UN

∂q
u0, r = 1,2, (53)

with the asterisk denoting complex conjugate transpose and
(u,v) =

∫ 1
0 u(x)v̄(x)dx The components of the vectorh and ma-

tricesH andG are defined analogously through the eigen- and
associated functionsu0 andu1 corresponding to the eigenvalue
λ = iω0 [37]. The eigenfunctionsu0 andv0 and the associated
functionsu1 andv1 of the original and adjoint eigenvalue prob-
lems are chosen to satisfy the bi-orthogonality and normalization

conditions [37]. The adjoint boundary value problems are con-
nected by the Lagrange formula

(Lu,v)− (u,L∗v) = (Vv)∗Ũu− (Ṽv)∗Uu. (54)

Formula (52) can serve for the approximation of the jump in
the critical load. In the finite dimensional case with two degrees
of freedom the expression for the limit of the critical load reduces
to (17) [36]. For the Beck column described by the equations
(49) we calculate the critical load as [37]

qcr(d1,d2) = q0−
1902d2

1

(14.34d1+0.091d2)2 +12.68d1d2+0.053d2
2.

(55)
The form of the stability boundary with the Whitney umbrella
singularity approximated by equation (55) was confirmed later
by numerical computations in [29]. The limit in the criticalload
following from (55) agrees well with the numerical data of [1].

Structural mechanics also has examples of near-Hamiltonian
continuous systems showing discontinuous changes in the stabil-
ity domain. As a modern application we mention a moving beam
with frictional contact investigated in [65]. Below we willcon-
sider an interesting example of the occurrence of the destabiliza-
tion paradox in fluid dynamics.

4.3.2 NEAR-HAMILTONIAN CASE: THE INSTABIL-
ITY OF BAROCLINIC ZONAL CURRENTS In the 1940s
the first studies appeared of instability of baroclinic zonal (west-
east) currents in the Earth’s atmosphere [14,16]. It is remarkable
that the unexpected destabilizing effect due to the introduction of
dissipation was discovered in the linear stability analyses of this
hydrodynamical problem by Holopainen (1961) [25] and Romea
(1977) [55] at the very same period of active research on the
destabilization paradox in structural mechanics. Recently these
studies were revisited by Krechetnikov and Marsden [46] with
the aim to prove rigorously the dissipation-induced instability.

Romea considered an infinite channel in the periodic zonal
directionx of width L in the meridional directiony that is rotating
with an angular velocityΩ. Two layers of incompressible, homo-
geneous fluids of slightly different densities (the lighterfluid on
top) are confined by the side walls and by horizontal planes, a
distanceD apart. For simplicity, it is assumed that, in the ab-
sence of motion, the interface is located halfway between the
horizontal planes, and is flat so that centrifugal effects may be
ignored. Each layer moves downstream with a constant velocity
and the slope of the interface is related to these velocitiesthrough
the thermal wind relation. It is implicitly assumed that this ba-
sic state is maintained against dissipation by an external energy
source which is unimportant with respect to the rest of the prob-
lem [55]. The linearized equations for each layer near the basic
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state, which is the geostrophic streamfunctions−U1y and−U2y,
are [46,55]

(∂t +U1∂x)[∇2ϕ1 +F(ϕ2−ϕ1)]+ [β +FUc]∂xϕ1 = −r∇2ϕ1,

(∂t +U2∂x)[∇2ϕ2 +F(ϕ1−ϕ2)]+ [β−FUc]∂xϕ2 = −r∇2ϕ2.

whereF is the internal rotational Froude number,r ≥ 0 is the
measure of the effect of Ekman suction (Ekman layer dissipa-
tion), andβ is the planetary vorticity factor introduced to take
into account the variation of the Coriolis parameter with latitude
(β-effect).

Assuming the wave solutionsϕ1,2 ∼ eiα(x−ct) sin(mπy),
where realα > 0 is thex wavenumber, Romea obtained a dis-
persion relation for the complex phase speedc = cr + ici in the
form of the second-order complex polynomial. The real part of
c is the speed of propagation of the perturbation, whileαci is
the growth rate of the wave. Ifci > 0, the wave grows, and the
system is unstable.

In the inviscid case when the Ekman layer dissipation is set
to zero, the transition to instability occurs through the Krein col-
lision that occurs atUc := U1−U2 = UcI, where [46,55]

UcI =
2βF

a2
√

4F2−a4
(56)

with a2 = α2 + m2π2. The critical shearUcI as a function of
the wavenumber is plotted in Fig. 8(left). This curve boundsthe
region of marginal stability of the system without dissipation.

In the limit of vanishing viscosity(r → 0), the stability
boundary differs from (56)

UcR =
2βF

a(a2 +F)
√

2F −a2
. (57)

The discrepancy between the stability domains of viscous and
inviscid systems is clearly seen in Fig. 8(left). Therefore, Romea
demonstrated that an introduction of infinitesimally smalldissi-
pation destabilizes the system, lowering the curve of marginal
stability by anO(1) amount. This is the appearance of the
destabilization paradox in a continuous near-Hamiltoniansys-
tem, which is similar to that found in near-reversible systems like
Ziegler’s pendulum and Beck’s column with dissipation [9, 68].
Fig. 8(right) reproduces the original drawing from [55] showing
the typical imperfect merging of modes [24] that substitutes the
‘perfect’ Krein collision in near-Hamiltonian and near-reversible
systems. Approximation to the eigenvalue branches in imper-
fect merging can be efficiently calculated by means of the per-
turbation theory of multiple eigenvalues for a wide class ofnon-
conservative systems [35–37].

Figure 8. (left) Critical shear as a function of wavenumber demonstrates

a discontinuous transition from the case when the ekman layer dissipation

r = 0 initially (UcI) to the case when r → 0 (UcR) and (right) a typical

imperfect merging of modes (growth rates) [55] that substitutes the ‘per-

fect’ krein collision in near-hamiltonian and near-reversible systems and

is characteristic for the destabilization paradox [9].
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