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Explicit formulae are developed for typical metamorphoses of characteristic curves in circulatory systems which depend on a 
vector of parameters. The formulae obtained utilize information on the system only at the point of confluence of the curves and 
enable one to analyse both qualitatively and quantitatively the behaviour of the oscillation frequencies in the neighbourhood of 
that point. Quadratic approximations are found for the domains of flutter and divergence, and the relation between the convexity 
properties of these domains and the type of metamorphosis of the characteristic curves is established. © 2002 Elsevier Science 
Ltd. All rights reserved. 

In circulatory systems which depend on parameters, one often observes a phenomenon of overlapping 
of the characteristic curves [1-5]. The curves describing the dependence of the eigenvalues of the linear 
operator of the system on a specified parameter -  often the non-conservative load parameter -  approach 
one another as the other parameters are varied, coming together at a certain point, and are then 
modified, forming a closed curve of complex eigenvalues - an "instability bubble". A description of this 
phenomenon will be given below. 

1. S T A T E M E N T  OF THE P R O B L E M  

Consider the oscillations of a linear autonomous non-conservative mechanical system when there are 
no damping or gyroscopic forces 

Mi] + Cq = 0 (1.1) 

where M = M T > 0 and C ~ C T are real m x m matrices of inertial coefficients and non-conservative 
positional forces, q is the vector of generalized coordinates, of dimension m, and the dots denote 
differentiation with respect to time t. System (1.1) is frequently referred to as a circulatory system 
[6, 7]. Seeking solutions of system (1.1) in the form q = ue/~, where o3 is the oscillation frequency, and 
using the notation A = M-tc,  ~, = o32, we arrive at the eigenvalue problem 

Au = ~,u (1.2) 

The inverse matrix M -1 exists because M is symmetric and positive-definite. That the matrix C is non- 
symmetric implies that the matrix A in (1.2) is also non-symmetric. Hence the spectrum of problem 
(1.2) may contain complex eigenvalues X. 

System (1.1) is stable if all the eigenvalues of problem (1.2) are positive and the number of eigenvectors 
belonging to each ~. is equal to the algebraic multiplicity of ~, as a root of the characteristic equation. 
In other words, simple elementary, divisors correspond to each positive eigenvalue. If all the ~,'s are 
real, but some of them are negative, then system (1.1) is statically unstable (divergence). The presence 
of complex eigenvalues ~, implies oscillatory instability (flutter). 

We shall assume that the matrices M and C, hence also A, are smooth functions of a parameter vector 
p e R n. It is well known [8-10] that in the case of the general position the smooth parts of the boundary 
of the stability domain - briefly, the stability boundary - of a circulatory system are made up of surfaces 
of codimension 1, at whose points the matrix A contains either a simple eigenvalue zero or a positive 
two-fold eigenvalue with a Jordan chain of length 2, all other eigenvalues ~. being positive and simple. 
Generally speaking, the stability boundary is not smooth and may have singularities of higher 
codimension, corresponding to matrices whose Jordan normal form has a more complicated structure 
[8, lO]. 
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As a rule, the stability boundary of a system depending on several parameters cannot be determined 
explicitly, while a numerical solution proves to be laborious. Nevertheless, there are problems where 
one has to determine the critical value of only one specified parameterpj  (1 ~<j ~< n), fixing the other 
parametersps (s ¢ j). In such cases one is interested in the dependence of the e igenvalues or oscillation 
frequencies, considered in the space (Re)~, Im )~,pj) or (Re co, Im o~,p/), on this parameter [1-5]. The 
function )~(pj) will be called a characteristics curve and the function co(p/) a frequency curve. 

In the case of the general position, the curves ~.(py) and co(pj) lie either in the real plane or outside 
it, corresponding to complex eigenvalues or frequencies. When )~ and co leave the real plane, they may 
"collide" with other eigenvalues of frequencies to form a two-fold eigenvalue )~ or frequency co with a 
Jordan chain of length 2. If the parameterpj  moves from a stability domain into a divergence domain, 
the characteristic curve will only change sign, remaining in the real plane, but the frequency curve will 
go from the real plane to the imaginary plane, through formation of a two-fold zero frequency with a 
Jordan chain of length 2 [9]. Variation of the parameters ps (s ~ j )  leads to deformation of the 
characteristic curve )~(pj) and frequency curve o~(pj). The families thus obtained contain curves with 
more complicated behaviour, in a non-removable manner. For example, two curves may approach one 
another and merge when the parameters are varied, but then metamorphose in such a way that they 
undergo a qualitative change of shape. 

We shall investigate some typical metamorphoses of characteristic curves and frequency curves in n- 
parameter circulatory systems near the smooth parts of the stability boundary. 

Theorem 1. Let ~.{pj) be a characteristic curve of system (1.1). Suppose that, at a non-singular point 
P0 = (P0,1, . .- ,  P0.n) ~ of the boundary between the stability and divergence domains, the matrix A(p0) 
contains a simple eigenvalue )~0 = 0 with right eigenvector u0 and left eigenvector v0, )~(P0,j) = 0 and 
the following condition holds 

vTA, ju0  Ip=po = 0, A j = ~A / ~pj (1.3) 

Then the behaviour of the characteristic curve  ~(.pj) in the neighbourhood of the point (Re ~.0, Im )~0, 
Po, j) is described by the equation 

AX,+tvrA,jGoA jUo - ~ v~'A jjUo]Ap ~ = ~] vorA.suoAPs (1.4) 
s=l,s#j 

A~,=~,-X 0, A p i = p t - p 0 . k ,  G 0 = [ A ( P 0 ) - g 0 I - ~ 0 v ~ ' ]  -j, A j j=~2AI~p} 

where I is the identity matrix. 

Theorem 2. Let k'(pj) and ),"~7~) be two characteristic curves of system (1.1). Suppose that at a non- 
singular point P0 = (P0,1 . . . .  ,PO,n) of the boundary between the stability and flutter domains the matrix 
A(p0) contains a two-fold eigenvalue )~0 > 0 to which correspond right and left Jordan chains of vectors, 
u0, ul and v0, vl, respectively, ~.'(P0,j) = )~"(Po, j) = ),0 and condition (1.3) holds. Then these characteristic 
curves are modified in the neighbourhood of the point (Re ~.0, Im )~0,P0d) as described by the following 
equation 

s=l,s#j 

Formulae defining the behaviour of the corresponding frequency curves are obtained from Eqs (1.4) 
and (1.5) by making the substitution Z = 0) 2. 

Theorem 1 and 2 will be proved in Section 4 using perturbation theory for the eigenvalues of non- 
selfadjoint operators. 

2. P E R T U R B A T I O N S  OF E I G E N V A L U E S  

Suppose that at a point P0 e Rn the spectrum of the matrix A(p0) contains an eigenvalue ~ .  Considering 
a smooth one-parameter curve issuing from the point P0, say p(e), e 1> 0, let us expand the function 
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p(e) in Taylor series in the neighbourhood of e = 0 (the prime denotes differentiation with respect 
to E) 

P(~) = Po + Ep' + ~ ~2p,, + o (E2  ) (2.1) 

Since A is a smooth function of the parameter vector, the function A(p(~)) may also be represented in 
series form 

• 2 ,, , , 2 + O(E ) A(p(~))= A(po)+EY.A,sP s + ~  ~A,sp  s + Y.A,s ,  p sp  , (2.2) 
S=I /-" ~S.~.l S,t=l J 

The derivatives of A with respect to the parameters are evaluated at the point P0 and may be expressed 
in terms of the corresponding derivatives of the matrices M and C. For example 

A s  = M o t C . s  - M o t M . s M o t C o ,  M o = M ( P o ) ,  Co = C ( P o )  

Let Ak denote the coefficient of ~k in expansion (2.2), and let us define vectors 

• 1 ,J . R" 
e = p' I~=o, u = -~- p [c=o' e, d ¢ (2 .3)  

Then 

n n l n 

A o = A ( P o ) ,  A I = • A . s e  s, A 2 = Y . A . s d  s + -  ~ . A  steset (2.4) 
s=l s=l 2 s,t=l " 

When the vector P0 is varied as in (2.1), the eigenvalue )~0 and the eigenvector u 0 receive increments 
which may be expressed as series in integer or fractional powers of e, depending on the Jordan structure 
corresponding to ~-0. 

If ;% is a simple eigenvalue of A 0 with eigenvector u0, the perturbed eigenvalue 9~ and eigenvector u 
are smooth functions of e and may be expressed as Taylor series [11] 

= ko  + e~.l + e2L2 + .... u = u o + e w  I + e2w2 +. . .  (2.5) 

Substituting expansions (2.2) and (2.5) into Eq. (1.2) and equating terms with like powers of ~, we obtain 
an eigenvalue problem for the unperturbed matrix Ao 

(A 0 - ~,ol)u0 = 0 (2.6) 

and equations determining the first and second corrections to the eigenvalue ~-0 and eigenvector u0 

(Ao  - ~ .o l )wl  = ~.lUo - A l u o  (2 .7)  

(Ao - ~ . o l ) w 2  = ~ l W l  - A l w l  + ~ .2no  - A 2 u  0 (2.8) 

Let (a, b) = alb l  + ... + ambm denote the scalar product of vectors a, b ~ C m. Together with problem 
(2.6), let us consider the adjoint eigenvalue problem 

(A r - ~ol)vo = 0 (2.9) 

We require the vector v0 to satisfy the following normalization condition 

(u0, Vo) = 1 (2 .10)  

Given the vector Uo, condition (2.10) enables one to determine the vector v0 uniquely. For the perturbed 
vector u we use the normalization condition 

(u,  Vo) = 1 (2 .11)  

which uniquely determines all the terms ~'i and wi in expansions (2.5). 
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Equations (2.7) and (2.8) are solvable if and only if their right-hand sides are orthogonal to the solution 
of the homogeneous adjoint eigenvalue problem (2.9). Hence, also using the normalization conditions 
(2.10) and (2.11), we obtain expressions for the coefficients ~,1 and ~'2 in expansion (2.5) 

~'1 =(Alu0,v0),  ~'2 = (AEU0,Vo)+(AlWl,V0) (2.12) 

The vector ws is found from Eq. (2.17) using the operator Go inverse to A0 - ~,0I 

w t = Go(ktu  o - A l u  o) 

The first equality of (2.12) is a necessary and sufficient condition for the existence of the inverse 
operator. Since det (.So - ~.01) = 0, the matrix (Ao - ~oI) -I does not exist. At the same time, the operator 
Go may be represented using a non-singular matrix in the form [12] 

Go = [Ao - kol - V0vT] -I (2.13) 

If ~ is a two-fold eigenvalue with Jordan chain of length 2, an eigenvector u0 and an associated vector 
us exist satisfying the equations 

(A 0 - ~,ol)u0 = 0 (A0 - k0I)ul = u0 (2.14) 

as well as an eigenvector and an associated vector of the adjoint system 

(Ao r - ~oI)vo = 0 (Ao r - ~ol)Vj = v o (2.15) 

The vectors Uo, Us, v0 and Vl satisfy the following orthogonality and normalization conditions 

(Uo,Vo)= 0 (u~,vo)-= (Uo,Vl) = I (2.16) 

When the parameter vector (2.1) is varied, the perturbed eigenvalue with Jordan chain of length 2 
and its eigenvector are represented by series in powers of the small parameter e 1/2 [11] 

~,, ---- ~0 + e ~ l  + e~,,2 + E3/2~3 + .... n -- u0 + E~2wl + Ew2 -FE3/2W3 + . . .  (2.17) 

It is convenient to subject u to the normalization condition 

(u, v l )  = l (2.18) 

It follows from condition (2.18) and expansions (2.17) that (wi, vs) = 0 (i = 1, 2 . . . .  ). Subst i tut ing 
expressions (2.2) and (2.17) into eigenvalue problem (1.2) and equating terms with like powers of e, 
we obtain equations for the corrections to ~,0 and w 0 

(Ao - k0I)wt = ~,iUo (2.19) 

(Ao - ~,oI)w2 = -Aluo + klwt + ~',2Uo (2.20) 

(Ao - ~-0I)w4 = -AIw2 - A2u0 + ~lw3 + ~2w2 + ~3w! + )'.4tl 0 (2.21) 

An expression for the vector w] satisfying normalization condition (2.18) follows easily from Eq. (2.19) 

wl = kl(ul - Uo(Uj, vl)) (2.22) 

Equation (2.2) is solvable if and only if its right-hand side is orthogonal to the vector v 0. By (2.16) 
and (2.22), this condition may be written in the form 

X] = (Alu0,v0) 

The vector w2 is found from Eq. (2.20) using the operator Go of (2.13) 

w2 =Go(~, lwl  +X2u o - A t u o )  

(2.23) 

(2.24) 
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If the right-hand side of Eq. (2.23) does not vanish, there are two non-trivial solutions 

X! = ±4(A~uo,v0) 

to which the vectors w 1 of (2.22) correspond. 
Let us consider the degenerate case 

(Atuo, v0) = 0 (2.25) 

Then the perturbed eigenvector u and eigenvalue )~ are determined by terms of the order of e, that is, 
by the coefficients w2 and )~2, since now in (2.17) we have 

;~,! = O, wl = 0 (2.26) 

In order to find the coefficient )~2, we write down the condition for Eq. (2.21) to be solvable. Taking 
the normalization condition (2.16) and degeneracy condition (2.6) into consideration, we obtain 

~'2 (w2, Vo ) - (At w2, Vo) - (A2u0, Vo ) ffi 0 (2.27) 

Multiplying both sides of Eq. (2.20) by Vl, we arrive at the relation 

(w2 ,  vo )  = ~'2 - (Atu0 ,  v t )  (2 .28)  

Substituting expressions (2.24) and (2.28) into Eq. (2.27), we find that in the degenerate case (2.25) 
the coefficient ~.2 is determined by a quadratic equation 

Z2 _ ~'2 [(Atuo, v! ) + (A! u l, v o)] - (A2u o, v o) + (Go(A ! u o), Alr Vo) = 0 (2.29) 

Remark. If the discriminant of Eq. (2.29) does not vanish, this guarantees bifurcation of the two-fold eigenvalue 
in the degenerate case (2.25). Using the explicit form of the solution of Eq. (2.29), we can write the bifurcation 

condition in equivalent form as 

2Z 2 ~: (Alu o, v! ) + (Atu I , v o ) (2.30) 

We shall prove that if conditions (2.25) and (2.30) hold simultaneously, then all the odd coefficients ~.~-1, w~_t 
of expansions (2.17) vanish. The proof is by induction. Putting i = 1 in (2.26)', we get )~1 = 0, wl = 0. Now suppose 
that for some integer k > 1 

~'2i-1 ----O, W2i_ I =0 ,  i=1  ..... k (2.31) 

Consider the equations obtained by equating terms with powers e (2k+1)/2 and e (2k+3)/2, after substituting expansions 
(2.2) and (2.17) into problem (1.2) 

k 2k 

(A o - ~ . 0 l ) w 2 t + l  = - ~Ajw2fk_j)+l + ~ ~'iW2k+l-i + ~ . 2 k + l U 0  
j - - I  i=1 

(2.32) 
k+l 2k+2 

( A  0 - ~ . 0 1 ) W 2 k + 3  = - XAjW2(k_j)+3 4. X~.iW2k+3_i + ~ . 2 k + 3 U 0  
jffil i=1 

By the induction hypothesis (2.31), Eqs (2.32) may be simplified as follows: 

(A o - kol)w2t+t = k2k+lu o 

(A o - XoI)w2t+ 3 =-Atw2t+] +~,2w2t+l +~.2k+lw2X2t+3u0 (2.33) 

By the first equation of (2.33) 

w2k+! = k2k+! (u! - Uo(U !,v! )) (2.34) 

Multiplying both sides of the second equation of (2.33) by vo and using relations (2.28) and (2.34), we obtain 

k2t+lf2k 2 -[(AlUl,Vo) + (A!uo,v!)]) = 0 (2.35) 
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Since condition (2.30) is assumed to hold, it follows from (2.35) and (2.34) that 

~'2k+l ---- 0, W2k+l = 0 

We have thus proved that all the odd coefficients in expansions (2.17) vanish if conditions (2.25) and (2.30) hold 
simultaneously. 

3. Q U A D R A T I C  A P P R O X I M A T I O N  OF T H E  S T A B I L I T Y  B O U N D A R Y  

Thus, we have constructive formulae which enables us to compute the first and second corrections to 
the eigenvalues and eigenvectors, for perturbation of a non-conservative system, in terms of the 
derivatives of  its matrices with respect to the parameters, and also in terms of the eigenvectors and 
associated vectors. In what follows we shall be interested only in real eigenvalues ~.0, since it is these 
that define the limits of stability. In that case the corresponding eigenvectors and associated eigenvectors 
may also be chosen to be real. We now define real vectors 

f=(fl ..... f.), h=(hl ..... h.); 

fs = (A,su0, v0), 2 h s = ( A , s u o , V l ) + ( A , s u l , v o ) ,  s = l  ..... n (3.1) 

as well as a real symmetric n x n matrix H with elements 

2 Hjk = -(A.kjU 0, v 0 ) + (G O (A,kU 0 ), A r v o) + (G O (A,yu o), Arvo) 
j,k=l ..... n 

(3.2) 

and we let (a, b) = albl  + ... + anbn denote the scalar product of vectors a, b ~ ~n. With this notation, 
using formulae (2.4), we have 

(Aluo,Vo) = (f,e), (A~Ul,Vo) + (Aluo,Vj) = 2(h,e) 

-(A2uo, Vo ) + (Go (Al Uo), Arvo) = (He, e) - (f, d) (3.3) 

The vector f: 0 has a simple geometrical meaning, namely, the normal to the stability boundary in 
its smooth parts. This is easily established by using (3.3) to rewrite the coefficients of expansions (2.5) 
and (2.17) for a simple zero eigenvalue and a two-fold positive eigenvalue 

Z. = (f, e)e + o(e), ~. = Z, o + ~ + o(~ ½) (3.4) 

If the vector e belongs to the half-space defined by the inequality (f, e) > 0, a slight variation of the 
parameters along the curve p(e) will make a zero eigenvalue become positive; a two-fold eigenvalue 
~0 will bifurcate into two simple positive eigenvalues, implying stability. But (f, e) < 0, a zero eigenvalue 
will become negative (divergence) and a two-fold eigenvalue ~,0 will bifurcate into a complex-conjugate 
pair (flutter). Consequently, evaluated at a non-singular point P0 of the stability boundary, the vector 
f of (3.1) will point into the stability domain (S) along the normal to the boundary (Fig. 1). The stability 
boundary itself is approximated in the neighbourhood of the point P0, to a first approximation, by its 
tangent plane 

(f, Ap) = 0, Ap = p - Po (3.5)  

Formulae (3.4) hold provided that (f, e) ¢ 0, which means that the curve p(e) is transversal to the stability 
boundary. In the single-parameter family of matrices A(p(e)) this is the case of general position, for 
which the behaviour of the characteristic curve ~,(e) described by formulae (3.4) is typical [9]. 

The geometrical meaning of the vector h and the matrix H defined by (3.1) and (3.2) is related to 
quadratic approximation of the stability domain. In order to establish this meaning, consider the curves 

p(e) = P0 +Ee, + 1~2d+ o(E 2) (3.6) 

which are tangent to the stability boundary at ~' = 0, so that one has the orthogonality condition 

(f, e , )  = 0 (3 .7)  
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Pj 

Fig. 1 

Let P0 be a point on the boundary between the stability and divergence domains. We shall study the 
behaviour of the simple zero eigenvalue that defines this boundary along such a curve. By condition 
(3.7), the coefficient ~1 in series (2.5) will vanish, and the expansion of the perturbed eigenvalue will 
begin with the e2 term. Transforming the right-hand side of formula (2.12) for ~2 using (2.3) and (3.3), 
we obtain a formula for the increment of the simple zero eigenvalue 

~, = ~ (f, p")E 2 - (Hp', p')E 2 + o(e 2) (3.8) 

Similarly, considering a point on the boundary between the stability and flutter domains and using 
relations (2.17), (2.26) and (2.29), we find that the bifurcation of the two-fold eigenvalue ~.0 along curves 
tangent to the stability boundary is defined by the equation 

(k - ~.0 - (h, p')e) 2 = ~ (f, p")e 2 - (Hp', p')e 2 + (h, p,)2 e2 + o(e2) (3.9) 

Note that condition (3.7) is also satisfied by curves on the boundary of the stability domain itself. 
Along such curves a simple zero eigenvalue remains equal to zero and a two-fold eigenvalue does not 
bifurcate. A necessary condition for this to occur is that the right-hand sides of formulae (3.8) and (3.9) 
should vanish. Writing these conditions in explicit form and taking into consideration that on these curves 

(f, Ap} = ~ (f, p")E 2 + o(e 2) (3.10) 

we conclude that the stability boundary of the circulatory system (1.1) in the neighbourhood of a non- 
singular point is described up to o(11Ap II 2) by 

Fk(A p) - (f, Ap) - Ga(Ap) = 0, k = 1,2 (3.11) 

Gj (Ap) = (HAp, Ap), G2 (Ap) = ((H - hh r)Ap, Ap) 

for k = 1, if the stability domain borders on the divergence domain, and for k = 2, if it has a common 
boundary with the flutter domain. 

It follows from Eq. (3.9) that the flutter domain is defined by the inequality F2 < 0, and the stability 
domain, accordingly, is defined by the inequality Fz > 0. Considering vectors Ap belonging to the tangent 
plane (3.5), we deduce from the condition F2 > 0 that if the quadratic form G2(Ap) is negative (positive) 
definite in the set (3.5), then the stability domain is concave (convex) and the flutter domain is convex 
(concave), since the tangent plane is contained in the stability (flutter) domain. Using Eq. (3.8) and 
reasoning in a similar way, we conclude that if the quadratic form GI(Ap) is negative (positive) definite 
in the set (3.5), the divergence domain is convex (concave) and the stability domain is concave (convex). 

In particular, if the matrix H evaluated at a non-singular point of the stability boundary is negative 
definite, the stability domain is concave at that point, while the unstable (flutter or divergence) domain 
is convex. 

Note that quadratic approximations of the stability boundaries of conservative systems have been 
obtained before [13]. 
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4. M E T A M O R P H O S E S  OF C H A R A C T E R I S T I C  CURVES 
N E A R  THE S T A B I L I T Y  B O U N D A R Y  

Formulae (3.4) show what happens to the eigenvalues of the matrix of the non-conservative system (1.1) 
for transverse crossing of the stability boundary. Let us consider the question of how the eigenvalues 
behave along a straight line tangent to the stability boundary at a non-singular point P0, and in general 
along straight lines parallel to the tangent at a short distance from the boundary. The answer is given 
by the following lemma. 

Lemma.  Let P0 be a non-singular point on the stability boundary, let f be the normal vector (3.1) 
evaluated at the point, let n = e/Ifl be the corresponding unit vector, and let t = e . / l e ,  [ be the unit 
vector of an arbitrary tangent at the point Po. Then the section of the stability domain by the plane Oxy 
spanned by the vectors n and t, with origin at the point Po, is described by one of the two inequalities 

y > p x 2 / I f l ,  y > Q x 2 / I f l  

P -- (nt ,  t), Q -- P - R 2, R = (h, t) (4.1) 

depending on whether the stability domain borders on the divergence domain or the flutter domain. 
Under these conditions, the behaviour of a simple zero eigenvalue is governed by the equation 

)~ + Px 2 = y [ f [ +o(x 2) (4.2) 

while the formula 

(~,- Xo - Rx) 2 +Q x2 =Ylfl+°(x2) (4.3) 

describes bifurcation of a two-fold eigenvalue )~0 > 0 with Jordan chain of length 2. 

Proof. Thebehaviour ofthezero and two-foldeigenvalues defining the stabilityboundaryalongthecurves (3.6) 
is described by formulae (3.8) and (3.9).The curve (3.6)in the plane of the normal and tangent vectors maybe 
expressed as 

p(e) =p0+x(e)t +y(e)n (4.4) 

where x(e) andy(e) are smooth functions of e. By definition (2.3) 

e ,  ~ p" = x' t  + y'n, 2d z p" = x"t  + y"n  (4.5) 

where all the derivatives are evaluated at e = 0. It follows from relations (4.5) that 

x'lt--0=le, I, Y'IE--0---0, Y"le--0=2(n, d) (4.6) 

Using expressions (4.5) and (4.6) for the derivatives, we can write formulae (3.8) and (3.9) in the form 

k = -P(x'e) 2 + ~ y "  I f I e 2 +o(e 2) (4.7) 

(~" - )~0 - Rx'e) 2 + Q(x'£) 2 = I//2 Y" I f I e 2 + o(e 2 ) (4.8) 

Since the first differential of the function y(e) vanishes at e = 0, its increment is determined by the term of order 
e 2. Consequently, formulae (4.2) and (4.3) hold in the neighbourhood of the point P0 in the plane of the vectors 
n and t. The condition for L to be positive as the parametersx andy vary, applied to Eq. (4.2), and the non-bifurcation 
condition, applied to Eq. (4.3), yield the second-order approximations (4.1) to the section of the stability domain 
by the plane Oxy. 

Corollary. Theorems 1 and 2 follow immediately from the lemma. Indeed, condition (1.3) implies 
that the j th  component of the normal vector f vanishes at the point P0. Since we are interested in the 
functions )~(p-), we have to take the unit tangent vector t parallel to thepj axis (Fig. 1). All components 

• J . . . .  

of this vector vamsh, except for tj = 1. Under these conditions, obviously 

A p j = x ,  y i f l =  ~ fsAps ~'~ 
s=l,s~j 
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In addition, because of the special form of the unit tangent vector t, the scalar products in formulae 
(4.1)-(4.3) degenerate and contain only the components/-/j7 and hj of the matrix H and vector h. Taking 
all this into consideration in (4.2) and (4.3) and expressing H~, hj and f~ in terms of the derivatives of 
the matrix A with respect to the parameters and the vectors of  the Jordan chain, we finally obtain 
formulae (1.4) and (1.5). 

For a given unit tangent vector t, Eqs (4.2) and (4.3) describe the behaviour of a zero or two-fold 
positive eigenvalue ~,(x, y) near the stability boundary. Let us consider the function ~,(x, y) as a one- 
parameter family of characteristic curves ~,(x), where y is the parameter of the family. Equations (4.2) 
and (4.3) enable us to investigate the behaviour of the characteristic curve ~,(x), qualitatively and 
quantitatively, in the vicinity of the stability boundary. 

If the stability domain (S) borders on the divergence domain (D), then ~,(x, y) is locally a family of 
real quadratic parabolas ~,(x), described by Eq. (4.2). The orientation of the parabola in the (Re ~,, x) 
plane is determined by the sign of P. As follows from relations (4.1), this quantity is also responsible 
for the convexity of the section of the stability domain by the plane of the parameters x and y. When 
P < 0, the parabola ~,(x) is convex downward, and the section of the stability domain is concave (Fig. 
2). Figure 2 shows the evolution of the characteristic curve as y varies from positive to negative values. 
For y > 0 all points of the characteristic curve lie above the x axis, guaranteeing the stability of the 
system. Aty = 0 the characteristic curve ~,(x) is tangent to the abscissa axis at the point x = 0, implying 
the formation of a zero eigenvalue at a regular point P0 of the boundary between the stable and 
divergence domains. When y < 0, because of the concavity of the section of the stability domain, an 
interval of the parameter x appears 

x 2 < - ylfl/IPI (4.9) 

in which the eigenvalue becomes negative (divergence). Comparing inequalities (4.1) and (4.9), we see 
that the latter is also a quadratic approximation to the divergence domain. In the case when P > 0, the 
parabola ~.(x) is convex upward, the section of the stability domain is convex, and the pattern of the 
behaviour of the characteristic curve as a function of the parameter y is obtained from the "frames" 
shown in Fig. 2 by reflection in a horizontal axis passing through the apex of the parabola. 

The behaviour of the characteristic curves ~,(x) near the boundary between the stability (S) and flutter 
(F) domains is more complicated, since in that case the curves may be modified. The type of 
metamorphosis depends on whether the section of the stability domain by the plane through the normal 
and tangent vectors to the boundary of that domain is convex or concave. It follows from the second 
inequality of (4.1) that the convexity of the section is determined here by the sign of Q. 

When Q < 0, the section of the stability domain is concave and the flutter domain is convex (Fig. 
3). Equation (4.3) describes a family of three-dimensional characteristic curves ~,(x) whose evolution 
as a function of the parameter y is shown in Fig. 3. When y > 0, the characteristic curves are the two 
branches of a hyperbola 

(Re~,-~.o-Rx)2+Qx 2 =Ylfl .  IMP,= 0 (4.10) 

s x 

s x 

y>O y=O y<O 

Fig. 2 

Re~ 

0 x 

Fig. 3 

y=O y<O 
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in the (Reh,x) plane. As the parametery decreases, the curves h(x), moving along the real axis, approach 
one another, having a common point (&, 0) at y = 0 (Fig. 3). In the neighbourhood of the common 
point, the characteristic curves are linear functions of x 

Reh=h,,+x(R+a), Imh=O (4.11) 

Wheny is reduced further, one has a qualitative change in the behaviour of the characteristic curves: 
an interval of the parameter x appears 

x2 < - YP’VIQI (4.12) 

in which the curves h(x) leave the real plane, forming an ellipse of complex eigenvalues - an “instability 
bubble” [ 141 

Reli = b + xR, (ImA)* - x*Q = -ylfl (4.13) 

Outside the interval (4.12) the characteristic curves are the two branches of the adjacent hyperbola 
(4.10) lying in the real plane. Comparison of formulae (4.10) and (4.13) indicates that the ellipse and 
the hyperbola lie in orthogonal planes, touching one another at the pointsxl,z = _ + dm, where two- 
fold real eigenvalues are formed 

(4.14) 

Thus, as the parameter x varies, the eigenvalue bifurcates at the points x1 and x2: two eigenvalues, 
being in one plane, collide and “take off” in directions orthogonal to that plane. This behaviour of the 
eigenvalues, known as “strong interaction, ” is typical of transverse crossing of the boundary of the flutter 
domain [9,14]. Note that inequahty (4.12) which defines the boundaries of the “instability bubble,” is 
identical with the quadratic approximation to the section of the flutter domain. Thus the phenomenon 
of overlapping characteristic curves turns out to be closely related to the convexity of the flutter domain. 

When Q > 0, the section of the stability domain is convex and the flutter domain is concave. The 
corresponding metamorphosis of characteristic curves is shown in Fig. 4. Wheny > 0, the eigenvalues 
form a real ellipse (4.10) in the interval 

x2 <ylfl/Q (4.15) 

and a hyperbola (4.13) lying in the (Reh, In& x) space. As the parameter y is reduced, the branches 
of the hyperbola approach one another and the “stability bubble” shrinks (Fig. 4). At y = 0 the ellipse 
(4.10) becomes a point (ha, 0), in whose neighbourhood the characteristic curves are linear functions 
ofx 

Reh=h,,+Rx, Imh=+x& (4.16) 

Hyperbolas (4.13) consisting of complex-conjugate eigenvalues, correspond to negative values of y 
(Fig. 4). 

Remark. In some cases it is preferable to work with frequency curves w(x), rather than with characteristic curves 
h(x). Functions describing the metamorphosis of the frequency curves locally are obtained from Eqs (4.2) and (4.3) 
by the substitution h = w2. When that is done it is readily seen that, near the boundary between the stability and 
flutter domains, the type of metamorphosis undergoes no qualitative changes. Near the boundary between stability 
and divergence domains, however, the situation is different. At x = 0, y = 0 we have, corresponding to a simple 

y>0 y=o Y<O 

Fig. 4 
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P < 0  

Reco 
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eigenvalue ~.0 = 0, a two-fold zero frequency with Jordan chain of length 2 [9]. Formula (4.2) with ~. = to2 describes 
the bifurcation of this frequency as a function of the parametersx andy. The pattern of metamorphosis of frequency 
curves o(x) as a function of the parameter y resembles the behaviour of the characteristic curves ~.(x) near the 
boundary of the flutter domain. The differences is that the frequency curves may lie only in the real and imaginary 
planes (Fig. 5). Thus, metamorphosis of frequency curves near the boundary of the divergence domain, as described 
by Eq. (4.2) with ~. = t02 (Fig. 5), is qualitatively different from the behaviour of the characteristic curve ~.(x) as 
described by Eq. (4.2) (Fig. 2). 

5. E X A M P L E .  T H E  S T A B I L I T Y  OF T H E  V I B R A T I O N S  
OF A P L A T E  IN A GAS F L O W  

As an example, let us consider a model problem on the stability of a plate in a gas flow. The plate rests 
on two elastic supports with stiffnesses c I and c2 per unit span and has two degrees of freedom: a vertical 
displacement z and an angle of deviation q) (Fig. 6). Small vibrations of the plate are described, in 
dimensionless variables, by the following equations [10, 15] 

z 1 ] a 2 CI -- C2 c - q  CypV , c =  (5.1) 
3 - 3 q  ; q = 2 ( q + c  2) 2(c I + c  2) 

is the coefficient of lift where q is the load parameter,  which is proportional to the velocity head, Cy 
force, p and v are the gas density and flow velocity respectively, and c is a parameter  characterizing the 
relation between the stiffnesses of the supports. It is assumed that the point Y at which the lift force is 
applied lies at a distance equal to a quarter of the plate's width from its front edge. Thus, system (5.1) 

ct depends on the parameter  vector p = (c, q). Setting Cy > 0, we obtain q >i 0. In addition, it follows 
from physical considerations that -1/2 ~< c <~ 1/2. 

Seeking a solution in the form [z, q~]r = ueiOZ, we arrive at the eigenvalue problem 

A u  = ~,u, ~, = co 2 

The corresponding characteristic equation 

~,2 + (3q - 4)~, + 12cq - 3q - 12c 2 + 3 = 0 (5.2) 

yields equations of curves separating the plane of the parameters c and q into domains of stability, 
divergence and flutter (Fig. 6) 

ql  (c) = 2~ (1 + 4c + 24c(c + 2)), qd(c) = 2 4 c l  - (5.3) 
1 - 4c . J  

The curve qf(c) bounds the flutter domain, and part of the curve qd(c), up to the point J(c = 
2/3-'~i3/6, q = 4/3) at which these curves are tangent to one another, is the boundary between the stability 
and divergence domains. The dashed line in Fig. 6 represents the part of the curve qd(c) lying in the 
divergence domain. 
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Let us consider the point (c = 0, q = 2/3) on the boundary between the stable and flutter domains 
corresponding to the two-fold eigenvalue 2. = 1 (Fig. 6). Characteristic equation (5.2) becomes 

• 3 2 
(2 . - !  + ' 2 q -  ! /  3 2 - ( - 4 c + - ~ q -  11 - - ' - 8 c - 4 c  2 (5.4) 

At c = 0 Eq. (5.4) defines two straight lines 

Z,=I,  2 . - - 3 - 3 q  (5.5) 

intersecting at the point (q = 2/3, 2. = 1). If c ~ 0, Eq. (5.4) describes a family of hyperbolas with 
asymptotes (5.5) (Fig. 7). For small c < 0 and 0 ~ q ~ 1, the solutions 2.(q) of Eq. (5.4) lie in the real 
plane, one of the eigenvalues remaining positive throughout the interval in which q varies, while the 
second changes sign at some qd < 1 (Fig. 7). Consequently, for c < 0 and sufficiently large q, system 
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(5.1) becomes statically unstable (divergence). The change of sign in the parameter c entails passage 
to hyperbolas laying in the adjacent angles formed by asymptotes (5.5). The characteristic curves are 
modified, and at the same time a zone of complex eigenvalues appears and a sudden fall in the critical 
load occurs. At the same time, stability is lost at those values of q/where the two positive eigenvalues 
~. come together to form a complex-conjugate pair (flutter). 

We will show that Eq. (5.4), which describes the metamorphosis of the characteristic curves ~.(q), 
may be approximated by formula (1.5), whose coefficients are found based solely on information about 
the system at the point P0 = (0, 2/3). 

In fact, X(2/3) = 1 is a two-fold eigenvalue whose eigenventors and associated vectors are 

0 

.0 =/l'0fl---II ! ,--lien (5.6) 

Since at the point (0, 2/3) we have 

vr ~A r~A =-8, O-~qUo=O V0 ~C I!0 (5.7) 

it follows that condition (1.3) is satisfied. A simple calculation shows that 

o3A r c3A o~2A ¢3A ~ 3A 
v r .~qu  o =0, v o -~qU, =-3,  Vo r ~-~ru 0 =0, v~-~qU0-~-q Uo =0  (5.8) 

Substituting expressions (5.7) and (5.8) into Eq. (1.5) and taking into account that Apl = c, Ap2 = q-2/3, 
we obtain the required approximation 

(X-I +3q-l) 2 -(3q-I)2 =-8C (5.9) 

Comparing the exact equation (5.4) with the approximate one (5.9), we note that the asymptotes 
~. = 1 and ~, = 3 - 3q coincide and that the characteristic curves are well approximated at small values 
of c. A quadratic approximation of the flutter domain in the neighbourhood of the point (0, 2/3) is found 
from the condition that the discriminant of Eq. (5.9) must be positive 

9 ( 2"~ x 

<>3itq- j 
The approximation (5.9) corresponds to a convex flutter domain (Fig. 6), while the approximate equation 
of the flutter boundary in the neighbourhood of the point P0 = (0, 2/3) is in good agreement with the 
exact equation of the boundary qf(c) in (5.3). 

We now consider a point (c = 0, q = 1) on the boundary between the stability and divergence domains, 
where the matrix A of system (5.1) has simple eigenvalues ~. = 1 and ~. = 0. Let us calculate the normal 
vector f to the boundary of the divergence domain. We first find the eigenvectors of the zero eigenvalue 

o0:1:1 v0:l:ll 
Substituting these expressions into formulae (3.1), we obtain 

1121 , f 1= 3 - ~  f -- -3 ' 

The orthogonality condition (3.7) enables us to find the unit tangent vector t, and formula (3.2) yields 
the matrix H 

t I -132 12 oli 
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Substituting these expressions into Eq. (4.1), we obtain an approximate equation for the boundary 
between the stability and divergence domains in x, y coordinates 

12-~'7 X2 y = -  . 
289 

Since the y coordinate increases in the direction of the normal vector f, the divergence domain is convex 
at the point (0, 1). This agrees with the conclusions of Section 3 concerning the convexity of the 
divergence domain for a negative-definite matrix H. The metamorphosis of the frequency curve c0(x) 
in the neighbourhood of that point is approximated by Eq. (4.2) with 3, = co 2, which takes the form 

co 2 - 3 6 x 2  = 3 - ~ f f y  ( 5 . 1 0 )  
17 

To get an idea of the accuracy of approximation (5.10), let us compare it with the characteristic 
equation (5.2) written in the system of coordinates defined by the vectors t and n = if If[. After 
substituting the parameters 

! ! 
c = ~ (x + 4y), q = 1 + ~ (4x - y) 

q l !  

the characteristic equation (5.2) becomes 

O~ 2 _ 36 x2 _ 3 l ~ y  = co 4 + CO 2 & ( 4 x  - y )  + 1 2 y ( 7 x  - 20y) 
17 417 17 

(5.11) 

Comparison of the exact equation (5.11) with the approximate one (5.10) shows that the latter, being 
far simpler, is a good description of the metamorphosis of the frequency curves in the vicinity of the 
point (x = 0, 0~ = 0) for small y values (Fig. 8). 
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