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Abstract— The paper presents a theory of unfolding of
eigenvalue surfaces of real symmetric and Hermitian matrices
due to an arbitrary complex perturbation near a diabolic
point. General asymptotic formulae describing deformations of
a conical surface for different kinds of perturbing matrices are
derived. As a physical application, singularities of the surfaces
of refractive indices in crystal optics are studied.

I. INTRODUCTION

Since the papers [1] and [2] it is known that the energy
surfaces in quantum physics may cross forming two sheets
of a double cone: a diabolo. The apex of the cone is called
a diabolic point, see [3]. This kind of crossing is typical for
systems described by real symmetric Hamiltonians with at
least two parameters and Hermitian Hamiltonians depending
on three or more parameters. From mathematical point of
view the energy surfaces are described by eigenvalues of real
symmetric or Hermitian operators dependent on parameters,
and the diabolic point is a point of a double eigenvalue with
two linearly independent eigenvectors. In modern problems
of quantum physics, crystal optics, physical chemistry, acous-
tics and mechanics it is important to know how the dia-
bolic point bifurcates under arbitrary complex perturbations
forming singularities of eigenvalue surfaces like a double
coffee filter with two exceptional points or a diabolic circle
of exceptional points, see e.g. [4]–[8].

In the present paper following the theory developed in
our paper [9] we study effects of complex perturbations in
multiparameter families of real symmetric and Hermitian ma-
trices. In case of real symmetric matrices we study unfolding
of eigenvalue surfaces near a diabolic point under complex
perturbations. Origination of a singularity ”double coffee
filter” is analytically described. Unfolding of a diabolic
point of a Hermitian matrix under an arbitrary complex
perturbation is analytically treated. We emphasize that the
unfolding of eigenvalue surfaces is described qualitatively
as well as quantitatively by using only the information at
the diabolic point, including eigenvalues, eigenvectors, and
derivatives of the system matrix taken at the diabolic point.
As a physical application, singularities of the surfaces of
refractive indices in crystal optics are studied.

The work is supported by the research grants RFBR 03-01-00161, CRDF-
BRHE Y1-M-06-03, and CRDF-BRHE Y1-MP-06-19.

O. N. Kirillov, A. A. Mailybaev, and A. P. Seyranian are with Institute
of Mechanics, Moscow State Lomonosov University, Michurinskii pr. 1,
119192, Moscow, Russia; kirillov@imec.msu.ru, mailybaev@imec.msu.ru,
seyran@imec.msu.ru

II. ASYMPTOTIC EXPRESSIONS FOR EIGENVALUES NEAR

A DIABOLIC POINT

Let us consider the eigenvalue problem

Au = λu (1)

for an m×m Hermitian matrix A, where λ is an eigenvalue
and u is an eigenvector. Such eigenvalue problems arise
in non-dissipative physics with and without time reversal
symmetry. Real symmetric and complex Hermitian matrices
correspond to these two cases, respectively. We assume that
the matrix A smoothly depends on a vector of n real
parameters p = (p1, . . . , pn). Let λ0 be a double eigenvalue
of the matrix A0 = A(p0) for some vector p0. Since A0 is
a Hermitian matrix, the eigenvalue λ0 is real and possesses
two eigenvectors u1 and u2. Thus, the point of eigenvalue
coupling for Hermitian matrices is diabolic. We choose the
eigenvectors satisfying the normalization conditions

(u1,u1) = (u2,u2) = 1, (u1,u2) = 0, (2)

where the standard inner product of complex vectors is given
by (u,v) =

∑m
i=1 uivi.

Under perturbation of parameters p = p0 + Δp, the
bifurcation of λ0 into two simple eigenvalues λ+ and λ−
occurs. The asymptotic formula for λ± under multiparameter
perturbation is [9]

λ± = λ0 +
〈f11 + f22,Δp〉

2
±

±
√

〈f11 − f22,Δp〉2
4

+ 〈f12,Δp〉〈f21,Δp〉. (3)

Components of the vector fij = (f1
ij , . . . , f

n
ij) are

fk
ij =

(
∂A

∂pk
ui,uj

)
, (4)

where the derivative is taken at p0, and inner products of
vectors in (3) are given by 〈a,b〉 =

∑n
i=1 aibi. In expression

(3) the higher order terms o(‖Δp‖) and o(‖Δp‖2) are
neglected before and under the square root. Since the matrix
A is Hermitian, the vectors f11 and f22 are real and the
vectors f12 = f21 are complex conjugate. In case of real
symmetric matrices A = A

T , the vectors f11, f22, and f12 =
f21 are real. The asymptotic expression for the eigenvectors
corresponding to λ± takes the form [9]

u± = α±u1 + β±u2,

α±
β±

=
〈f12,Δp〉

λ± − λ0 − 〈f11,Δp〉 =
λ± − λ0 − 〈f22,Δp〉

〈f21,Δp〉 . (5)
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Expressions (5) provide zero order terms for the eigenvectors
u± under perturbation of the parameter vector.

Now, consider an arbitrary complex perturbation of the
matrix family A(p)+ΔA(p). Such perturbations appear due
to non-conservative effects breaking symmetry of the initial
system. We assume that the size of perturbation ΔA(p) ∼ ε
is small, where ε = ‖ΔA(p0)‖ is the Frobenius norm of the
perturbation at the diabolic point. Behavior of the eigenvalues
λ± for small Δp and small ε is described by the following
asymptotic formula [9](

λ± − λ0 − 〈f11 + f22,Δp〉
2

− ε11 + ε22

2

)2

=

=
(〈f11 − f22,Δp〉 + ε11 − ε22)2

4
+

+(〈f12,Δp〉 + ε12)(〈f21,Δp〉 + ε21). (6)

The quantities εij are small complex numbers of order ε
given by the expression

εij = (ΔA(p0)ui,uj) . (7)

A small variation of the matrix family leads to the following
correction of the asymptotic expression for the eigenvectors:
u± = αε

±u1 + βε
±u2, where

αε
±

βε±
=

〈f12,Δp〉 + ε12

λ± − λ0 − 〈f11,Δp〉 − ε11
=

=
λ± − λ0 − 〈f22,Δp〉 − ε22

〈f21,Δp〉 + ε21
. (8)

The ratios αε
+/βε

+ = αε
−/βε

− at the point of coincident
eigenvalues λ+ = λ−. Hence, the eigenvectors u+ =
u− coincide, and the point of eigenvalue coupling of the
perturbed system becomes exceptional.

III. UNFOLDING OF A DIABOLIC SINGULARITY FOR REAL

SYMMETRIC MATRICES

Let us assume that A(p) is an n-parameter family of
real symmetric matrices. Then its eigenvalues λ are real.
Let λ0 be a double eigenvalue of the matrix A0 = A(p0)
with two real eigenvectors u1 and u2. Under perturbation of
parameters p = p0 + Δp, the eigenvalue λ0 splits into two
simple eigenvalues λ+ and λ−. The asymptotic formula for
λ± under multiparameter perturbation is given by equations
(3) and (4), where the vectors f11, f22, and f12 = f21 are
real. Then, equation (3) takes the form(

λ± − λ0 − 〈f11 + f22,Δp〉
2

)2

− 〈f11 − f22,Δp〉2
4

=

= 〈f12,Δp〉2. (9)

Equation (9) describes a surface in the space
(p1, p2, . . . , pn, λ), which consists of two sheets λ+(p) and
λ−(p). For the two-parameter matrix A(p1, p2) equation
(9) defines a double cone with apex at the point (p0, λ0)
in the space (p1, p2, λ). The point (p0, λ0) is referred
to as a ”diabolic point” [3] due to the conical shape of
the children’s toy ”diabolo”. The double eigenvalue is a

phenomenon of codimension 2 in an n-parameter family of
real symmetric matrices [1].

Let us consider a perturbation A(p)+ΔA(p) of the real
symmetric family A(p) in the vicinity of the diabolic point
p0, where ΔA(p) is a complex matrix with the small norm
ε = ‖ΔA(p0)‖. Splitting of the double eigenvalue λ0 due to
a change of the vector of parameters Δp and a small complex
perturbation ΔA is described by equation (6), which acquires
the form

λ± = λ′
0 + μ ±√

c, c = (x + ξ)2 + (y + η)2 − ζ2. (10)

In equation (10) the quantities λ′
0, x, and y are real:

λ′
0 = λ0 +

1
2
〈f11 + f22,Δp〉,

x =
1
2
〈f11 − f22,Δp〉, y = 〈f12,Δp〉, (11)

while the small coefficients μ, ξ, η, and ζ are complex:

μ =
1
2
(ε11 + ε22), ξ =

1
2
(ε11 − ε22),

η =
1
2
(ε12 + ε21), ζ =

1
2
(ε12 − ε21). (12)

From equations (10) and (11) we get the expressions
determining the real and imaginary parts of the perturbed
eigenvalues

Reλ± = λ′
0 +Reμ±

√(
Rec +

√
Re2c + Im2c

)
/2, (13)

Imλ± = Imμ ±
√(

−Rec +
√

Re2c + Im2c
)

/2. (14)

Strictly speaking, for the same eigenvalue one should take
equal or opposite signs before the square roots in (13), (14)
for positive or negative Imc, respectively.

Equations (13) and (14) define surfaces in the spaces
(p1, p2, . . . , pn,Reλ) and (p1, p2, . . . , pn, Imλ). Two sheets
of the surface (13) are connected (Reλ+ = Reλ−) at the
points satisfying the conditions

Rec ≤ 0, Imc = 0, Reλ± = λ′
0 + Reμ, (15)

while the sheets Imλ+(p) and Imλ−(p) are glued at the set
of points satisfying

Rec ≥ 0, Imc = 0, Imλ± = Imμ. (16)

The eigenvalue remains double under the perturbation of
parameters when c = 0, which yields two equations Rec = 0
and Imc = 0. Two cases are distinguished according to the
sign of the quantity

D = Im2ξ+Im2η−Im2ζ. (17)

If D > 0, then the equations Rec = 0 and Imc = 0 yield
two solutions (xa, ya) and (xb, yb), where

xa,b = −Reξ +
ImξReζImζ

Im2ξ+Im2η
±
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Fig. 1. Unfolding of a diabolic point due to complex perturbation.

±
Imη

√
(Im2ξ+Im2η+Re2ζ)(Im2ξ+Im2η−Im2ζ)

Im2ξ+Im2η
, (18)

ya,b = −Reη +
ImηReζImζ

Im2ξ+Im2η
∓

∓
Imξ

√
(Im2ξ+Im2η+Re2ζ)(Im2ξ+Im2η−Im2ζ)

Im2ξ+Im2η
. (19)

These two solutions determine the points in parameter space,
where double eigenvalues appear. When D = 0, the two
solutions coincide. For D < 0, the equations Rec = 0
and Imc = 0 have no real solutions. In the latter case, the
eigenvalues λ+ and λ− separate for all Δp.

Note that the quantities Imξ and Imη are expressed by
means of the anti-Hermitian part ΔAN = (ΔA− ΔA

T
)/2

of the matrix ΔA as

Imξ =
(ΔAN (p0)u1,u1)−(ΔAN (p0)u2,u2)

2i
,

Imη =
(ΔAN (p0)u1,u2)+(ΔAN (p0)u2,u1)

2i
,

(20)

while Imζ depends on the Hermitian part ΔAH = (ΔA +
ΔA

T
)/2 as

Imζ =
(ΔAH(p0)u1,u2) − (ΔAH(p0)u2,u1)

2i
. (21)

If D > 0, one can say that the influence of the anti-
Hermitian part of the perturbation ΔA is stronger than
that of the Hermitian part. If the Hermitian part prevails
in the perturbation ΔA, we have D < 0. In particular,
D = −Im2ζ < 0 for a purely Hermitian perturbation ΔA.

Let us assume that the vector p consists of only two
components p1 and p2, and consider the surfaces (13) and
(14) for different kinds of the perturbation ΔA(p). Consider
first the case D < 0. Then, the eigensheets Reλ+(p) and
Reλ−(p) are separate, see Figure 1a. Equation Imc = 0
defines a line in parameter plane. The sheets Imλ+(p) and
Imλ−(p) of the eigensurface (14) intersect along the line

Imc/2 = (x+Reξ)Imξ + (y+Reη)Imη − ReζImζ = 0,

Imλ± = Imμ, (22)

given by conditions (16).
In the case D > 0 the line Imc = 0 and the ellipse defined

by the quation Rec = 0 have common points pa and pb

where the eigenvalues couple. Coordinates of these points
can be found from the equations (11), where x = xa,b and
y = ya,b are defined by expressions (18) and (19). Here we
have assumed that the vectors f11 − f22 and f12 are linearly
independent. Note that the points pa and pb coincide in the
degenerate case D = 0.

According to conditions (15) the real eigensheets
Reλ+(p) and Reλ−(p) are glued in the interval [pa,pb]
of the line

Imc/2 = (x+Reξ)Imξ + (y+Reη)Imη − ReζImζ = 0,

Reλ± = λ′
0 + Reμ. (23)

The surface of real eigenvalues (13) is called a ”double coffee
filter” [6]. The unfolding of a diabolic point into the double
coffee filter is shown in Figure 1b. Note that in crystal optics
and acoustics the interval [pa,pb] is referred to as a ”branch
cut”, and the points pa, pb are called ”singular axes”, see
[5], [7]. According to equation (8) the double eigenvalues at
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Fig. 2. Unfolding of a diabolic point into an exceptional ring in parameter
space.

pa and pb possess only one eigenvector and, hence, they are
exceptional points.

IV. UNFOLDING OF A DIABOLIC SINGULARITY FOR

HERMITIAN MATRICES

Let us consider a multi-parameter Hermitian matrix A(p).
Assume that p0 is a diabolic point, where the matrix
A0 = A(p0) has a double real eigenvalue λ0 with two
eigenvectors. The splitting of λ0 into a pair of simple real
eigenvalues λ+ and λ− is described by expressions (3),
(4), where the vectors f11 and f22 are real and the vectors
f12 = f21 are complex conjugate. By using expression (3),
we find

λ± = λ′
0 ±

√
x2 + y2 + z2, (24)

where λ′
0, x, y, and z are real quantities depending linearly

on the perturbation of parameters Δp as follows

λ′
0 = λ0 +

〈f11 + f22,Δp〉
2

, x =
〈f11 − f22,Δp〉

2
,

y = 〈Re f12,Δp〉, z = 〈Im f12,Δp〉. (25)

The eigenvalues coincide if x = y = z = 0. The equations
x = y = z = 0 with relations (25) provide a plane in
parameter space tangent to the set of diabolic points. This
plane has dimension n−3, which agrees with the well-known
fact that the diabolic point is a codimension 3 phenomenon
for Hermitian systems [1].

Now let us consider a general non-Hermitian perturbation
of the system A(p) + ΔA(p), assuming that the size of
perturbation at the diabolic point ε = ‖ΔA(p0)‖ is small.
The two eigenvalues λ+ and λ−, which become complex
due to non-Hermitian perturbation, are given by asymptotic
expressions (6), (7). With the use of the new coordinates
(25), we write the expression (6) as

λ± = λ′
0 + μ ±√

c, (26)

where
c = (x + ξ)2 + (y + η)2 + (z − iζ)2, (27)

and μ, ξ, η, ζ are small complex quantities of order ε given
by expressions (12).

The eigenvalues couple (λ+ = λ−) if c = 0.
This yields two equations Rec = 0 and Imc = 0.
The first equation defines a sphere in (x, y, z) space

with the center at (−Re ξ,−Re η,−Im ζ) and the radius√
Im2ξ + Im2η + Re2ζ, which are small of order ε. The

second equation yields a plane passing through the center
of the sphere. The sphere and the plane intersect along a
circle. Points of this circle determine values of parameters,
for which the eigenvalues λ± coincide. Since c = 0 at the
coupling point, expression (8) for the eigenvectors takes the
form

u± = αε
±u1 + βε

±u2,

αε
±

βε±
=

y + iz + η + ζ

−x − ξ
=

x + ξ

y − iz + η − ζ
. (28)

Thus, all points of the circle are exceptional points, where
the two eigenvectors u− and u+ merge in addition to the
coupling of the eigenvalues λ+ and λ−. By using the linear
expressions (25), the set of exceptional points is found in
the original parameter space p. The exceptional circle in
(x, y, z) space is transformed into an exceptional elliptic ring
in three-parameter space p, see Figure 2. Let us consider the
plane Imc = 0, at which the quantity c is real. By formula
(26), the real parts of the eigenvalues λ± coincide inside the
exceptional ring, where c < 0, and the imaginary parts of
λ± coincide outside the exceptional ring, where c > 0, see
the dark and light shaded areas in Figure 2.

V. UNFOLDING OF OPTICAL SINGULARITIES OF

BIREFRINGENT CRYSTALS

Optical properties of a non-magnetic dichroic chiral
anisotropic crystal are characterized by the inverse dielectric
tensor η, which relates the vectors of electric field E and the
displacement D as [10]

E = ηD. (29)

A monochromatic plane wave of frequency ω that propagates
in a direction specified by a real unit vector s = (s1, s2, s3)
has the form

D(r, t) = D(s) exp iω

(
n(s)

c
s
T
r − t

)
, (30)

where n(s) is a refractive index, and r is the real vector of
spatial coordinates. With the wave (30) and the constitutive
relation (29) Maxwell’s equations after some elementary
manipulations yield

ηD(s) − ss
T ηD(s) =

1
n2(s)

D(s). (31)

Multiplying equation (31) by the vector s
T from the

left, we find that for plane waves the vector D is always
orthogonal to the direction s, i.e., s

T
D(s) = 0. By using

this condition, we write (31) in the form of the eigenvalue
problem [

(I − ss
T )η(I − ss

T )
]
u = λu, (32)

where λ = n−2, u = D, and I is the identity matrix. Since
I−ss

T is a singular matrix, one of the eigenvalues is always
zero. Let us denote the other two eigenvalues by λ+ and
λ−. These eigenvalues determine refractive indices n, and
the corresponding eigenvectors yield polarizations.
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The inverse dielectric tensor is described by a complex
non-Hermitian matrix η = ηtransp+ηdichroic+ηchiral. The
symmetric part of η consisting of the real matrix ηtransp

and imaginary matrix ηdichroic constitute the anisotropy
tensor, which describes the birefringence of the crystal. For
a transparent crystal, the anisotropy tensor is real and is
represented only by the matrix ηtransp; for a crystal with
linear dichroism it is complex. Choosing coordinate axes
along the principal axes of ηtransp, we have

ηtransp =

⎛
⎝ η1 0 0

0 η2 0
0 0 η3

⎞
⎠ . (33)

The matrix

ηdichroic = i

⎛
⎝ ηd

11 ηd
12 ηd

13

ηd
12 ηd

22 ηd
23

ηd
13 ηd

23 ηd
33

⎞
⎠ (34)

describes linear dichroism (absorption). The matrix ηchiral

gives the antisymmetric part of η describing chirality (optical
activity) of the crystal. It is determined by the optical activity
vector g = (g1, g2, g3) depending linearly on s as

ηchiral = i

⎛
⎝ 0 −g3 g2

g3 0 −g1

−g2 g1 0

⎞
⎠ ,

g = γs =

⎛
⎝ γ11 γ12 γ13

γ12 γ22 γ23

γ13 γ23 γ33

⎞
⎠

⎛
⎝ s1

s2

s3

⎞
⎠ , (35)

where γ is a symmetric optical activity tensor; this tensor
has an imaginary part for a material with circular dichroism,
see [7] for more details.

First, consider a transparent non-chiral crystal, when
ηdichroic = 0 and γ = 0. Then the matrix

A(p) = (I − ss
T )ηtransp(I − ss

T ) (36)

is real symmetric and depends on a vector of two parameters
p = (s1, s2). The third component of the direction vector s

is found as s3 = ±
√

1 − s2
1 − s2

2, where the cases of two
different signs should be considered separately. Below we
assume that three dielectric constants η1 > η2 > η3 are
different. This corresponds to biaxial anisotropic crystals.

The nonzero eigenvalues λ± of the matrix A(p) are found
explicitly in the form [11]

λ± =
traceA

2
± 1

2

√
2 trace (A2) − (traceA)2. (37)

The eigenvalues λ± are the same for opposite directions s

and −s. By using (33) and (36) in (37), it is straightforward
to show that two eigenvalues λ+ and λ− couple at

s0 = (S1, 0, S3), λ0 = η2;

S1 = ±
√

(η1 − η2)/(η1 − η3), S3 = ±
√

1 − S2
1 , (38)

which determine four diabolic points (for two signs of S1

and S3), also called optic axes [7]. The double eigenvalue

Fig. 3. Diabolic singularities near optic axes and their local approximations.

λ0 = η2 of the matrix A0 = A(p0), p0 = (S1, 0) possesses
two eigenvectors

u1 =

⎛
⎝ 0

1
0

⎞
⎠ , u2 =

⎛
⎝ S3

0
−S1

⎞
⎠ , (39)

satisfying normalization conditions (2). Using expressions
(36) and (39), we evaluate the vectors fij with components
(4) for optic axes. Substituting them in (9), we obtain the
local asymptotic expression for the cone singularities in the
space (s1, s2, λ) as

(λ − η2 − (η3 − η1)S1(s1 − S1))2 =

= (η3 − η1)2S2
1((s1 − S1)2 + S2

3s2
2). (40)

Equation (40) is valid for each of the four optic axes (38).
Now let us assume that the crystal possesses absorption

and chirality. Then the matrix family (36) takes a complex
perturbation A(p) + ΔA(p), where

ΔA(p) = (I − ss
T )(ηdichroic + ηchiral)(I − ss

T ). (41)

Assume that the absorption and chirality are weak, i.e., ε =
‖ηdichroic‖+‖ηchiral‖ is small. Then we can use asymptotic
formulae of Sections 2 and 3 to describe unfolding of
diabolic singularities of the eigenvalue surfaces. For this
purpose, we need to know only the value of the perturbation
ΔA at the optic axes of the transparent non-chiral crystal
s0.

Substituting matrix (41) evaluated at optic axes (38) into
expression (7), and then using formulae (12), we obtain

μ = i(ηd
22 + ηd

11S
2
3 − 2ηd

13S1S3 + ηd
33S

2
1)/2,

ξ = i(ηd
22 − ηd

11S
2
3 + 2ηd

13S1S3 − ηd
33S

2
1)/2,

η = i(ηd
12S3 − ηd

23S1),

ζ = −i
(
γ11S

2
1 + 2γ13S1S3 + γ33S

2
3

)
.

(42)

We see that μ, ξ, and η are purely imaginary numbers
depending only on dichroic properties of the crystal (absorp-
tion). The quantity ζ depends only on chiral properties of the
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Fig. 4. Unfolding of singularities near optic axes.

crystal; ζ is purely imaginary if the optical activity tensor γ
is real.

Singularities for crystals with weak dichroism and chirality
were studied recently in [7]. It was shown that the dou-
ble coffee filter singularity arises in absorption-dominated
crystals, and the sheets of real parts of eigenvalues are
separated in chirality-dominated crystals. According to the
results of Section 3, these two cases are explicitly determined
by the conditions D > 0 and D < 0, respectively, where
D = Im2ξ + Im2η − Im2ζ.

As a numerical example, let us consider a crystal possess-
ing weak absorption and chirality described by the tensors
(34), (35) with

ηdichroic =
i

200

⎛
⎝ 3 2 0

2 3 1
0 1 3

⎞
⎠ ,

γ =
1

200

⎛
⎝ 3 1 2

1 3 1
2 1 3

⎞
⎠ . (43)

A corresponding transparent non-chiral crystal is character-
ized by η1 = 0.5, η2 = 0.4, η3 = 0.1, and its eigenvalue
surfaces with two optic axes are presented in Figure 3
together with the conical surfaces (40). The two optic axes
shown in Figure 3 are s0 = (±1/2, 0,

√
3/2) with the

double eigenvalue λ0 = 2/5.
By using (43) in (42), we find that the condition D =
7

160000 (4
√

3 − 5) > 0 is satisfied for the left optic axis
s0 = (−1/2, 0,

√
3/2). Hence, the diabolic singularity

bifurcates into a double coffee filter with two exceptional
points. Local approximations of the eigenvalue surfaces are
given by expressions (13), (14). Figure 4 shows these local
approximations compared with the exact eigenvalue surfaces
given by (37). For the right optic axis s0 = (1/2, 0,

√
3/2),

the condition D = − 7
160000 (4

√
3 + 5) < 0 is satisfied.

Hence, the eigenvalue sheets (for real parts) separate under
the bifurcation of the right diabolic singularity. Approximate
and exact eigenvalue surfaces are shown in Figure 4. We
observe that the unfolding types are different for different
optic axes. As it is seen from Figure 4, the asymptotic
formulae provide an accurate description for unfolding of
eigenvalue surfaces near diabolic points.

VI. CONCLUSION

Non-Hermitian Hamiltonians and matrices usually appear
in physics when dissipative and other non-conservative ef-
fects are taken into account. As it is stated in [8], Hermitian
physics differs radically from non-Hermitian physics in case
of coalescence (coupling) of eigenvalues. In the present paper
we gave analytical description for unfolding of eigenvalue
surfaces due to an arbitrary complex perturbation with the
singularities known in the literature as a ”double coffee-
filter” and a ”diabolic circle”. The developed theory requires
only eigenvectors and derivatives of the matrices taken at
the singular point, while the size of the matrix and its
dependence on parameters are arbitrary. The given physical
example from crystal optics demonstrates applicability and
accuracy of the theory.
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