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Abstract
An effect of small internal and external damping on

the stability of continuous non-conservative systems
is investigated. A theory is developed, qualitatively
and quantitatively describing the destabilization para-
dox in non-conservative systems, i.e. the jump in the
critical load and frequency of the system when small
dissipative forces are taken into account. The theory
is based on the bifurcation analysis of multiple eigen-
values of non-self-adjoint boundary eigenvalue prob-
lems depending on parameters. It is shown that the
destabilization paradox is related to the perturbation of
the double eigenvalue of a circulatory system by small
damping. The formulae are derived, which describe the
behavior of eigenvalues of a non-conservative system
due to change of the load and damping parameters. Ex-
plicit expressions for the jumps in the critical load and
frequency are found. Stabilization conditions for small
damping are established. As a mechanical example the
stability of a viscoelastic rod with small internal and
external damping, loaded by tangential follower force,
is studied in detail.
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1 Introduction
Studying the stability of a two-link pendulum loaded

by a follower force [Ziegler, 1952] came to an un-
expected conclusion that the critical load of the non-
conservative system with vanishingly small damping
is considerably lower than that of the system with-
out dissipation. This effect known as the destabi-
lization paradox was detected in many other non-
conservative mechanical systems, both discrete and
continuous, see e.g. [Bolotin, 1963], [Bolotin and
Zhinzher, 1969], [Bolotin et al., 2002], [Andreichikov

and Yudovich, 1974], [Panovko and Sorokin, 1987],
[Seyranian, 1990], [Seyranian, 1996], [Seyranian and
Pedersen, 1993], [Zhinzher, 1994], [Langthjem and
Sugiyama, 2000]. In recent papers by [Seyranian and
Kirillov, 2003] and [Kirillov, 2004] the effect of small
velocity-dependent forces on the stability of finite-
dimensional non-conservative systems was studied in
general formulation.
In this contribution we analyze the stabilizing and

destabilizing effect of small damping for rather gen-
eral class of continuous non-conservative systems, de-
scribed by the non-self-adjoint boundary eigenvalue
problems. Explicit asymptotic expressions obtained for
the stability domain allow us to predict when a given
combination of the damping parameters leads to in-
crease or to decrease in the critical non-conservative
load. The results obtained explain why different types
of internal and external damping so surprisingly influ-
ence on the stability of non-conservative systems.

2 Bifurcation of multiple eigenvalues
To start our analysis we consider generalized bound-

ary eigenvalue problem for the non-self-adjoint dif-
ferential operator smoothly dependent on the complex
spectral parameter and vector of real parameters. The
study of bifurcations of multiple eigenvalues of the op-
erator due to change of the parameters provides us by
necessary information on the system stability.

2.1 Basic relations
Following [Mennicken and Möller, 2003] we denote

by L a linear differential operator of order m with re-
spect to the variable x. The action of the operator on a
smooth function u(x) is defined by the expression

Lu =
m∑

j=0

lj
dm−ju

dxm−j
(1)



The coefficients lj(x, λ,p) of the operator L smoothly
depend on x. The function l0(x) defined on the inter-
val x ∈ [0, 1] is bounded from the bottom by a positive
constant. It is assumed that the coefficients lj(x, λ,p)
depend analytically on a complex spectral parameter λ
and are smooth functions of the vector of real parame-
ters p ∈ R

n.
We define the matrix of boundary conditions as the

block matrix U = [A B] of dimension m × 2m
and rank m, consisting of the m × m blocks A
and B. It is convenient to define the vector u =
(u(0),u(1)) of dimension 2m, where the vectors
u(0) = (u(0), u′x(0), . . . , u(m−1)

x (0)) and u(1) =
(u(1), u′x(1), . . . , u(m−1)

x (1)) consist of the values of
the function u(x) and its derivatives evaluated at the
boundary points x = 0 and x = 1. Then,

Uu = Au(0) + Bu(1) (2)

It is assumed that the entries of the matrices A(λ,p)
and B(λ,p) are analytical functions of the complex
spectral parameter λ and smoothly depend on the vec-
tor of real parameters p ∈ R

n.
On the interval x ∈ [0, 1] we consider the eigenvalue

problem for the differential operator L with the bound-
ary conditions defined by the matrix U

L(x, λ,p)u = 0, U(λ,p)u = 0 (3)

If the functions y1(x), y2(x), . . ., ym(x) form a fun-
damental system of solutions of the differential equa-
tion (3), then its general solution has the form u(x) =∑m

j=1 cjyj(x). A nontrivial solution of the boundary
problem (3) exists if and only if the characteristic de-
terminant is zero

det(AY(0)+BY(1))=0 (4)

The entries of the matrix Y(x) are defined by the ex-
pressions Yij(x)=yj(i−1)

x (x), i, j = 1, 2, . . . ,m.
For a fixed vector p=p0 a value λ0 of the spectral pa-

rameter, for which a nontrivial solution u0 of the prob-
lem (3) exists, is an eigenvalue, and a function u0 is an
eigenfunction, corresponding to λ0. Eigenvalues of the
problem (3) are the roots of the equation (4).
Let us introduce a block matrix Ũ=[Ã B̃] of dimen-

sionm×2m, where the matrices Ã and B̃ of dimension
m×m in the general case depend on the spectral pa-
rameter λ and vector of real parameters p. We choose
the matrices Ã and B̃ so that the block matrix of di-
mension 2m × 2m, composed of the matrices U, Ũ,
is nonsingular in the vicinity of the point p = p0 and
the eigenvalue λ = λ0. Then, we define the matrices
V and Ṽ of dimensionm× 2m by the expressions

[
−Ṽ
V

]∗
=

[−L(0) O
O L(1)

] [
A B
Ã B̃

]−1

(5)

where O is the matrix of dimension m ×m with zero
entries, and the asterisk indicates Hermitian conjuga-
tion.
The matrices L(0) and L(1) in (5) are the values of the
m×mmatrix L(x) at the points x = 0 and x = 1. The
entries Lij(x) of the matrix are expressed by means of
the coefficients of the differential operator L and their
derivatives with respect to x

Lij(x) =
m−j∑

k=i−1

(−1)kCi−1
k

dk−i+1

dxk−i+1
lm−j−k, (6)

Ci−1
k =

{ k!
(i−1)!(k−i+1)! , k ≥ i−1 ≥ 0,

0, k < i−1.
(7)

The operator L∗, which is adjoint to L, is defined by
the expression [Mennicken and Möller, 2003]

L∗v =
m∑

j=0

(−1)m−j d
m−j

dxm−j
(lj(x)v) (8)

The eigenvalue problem adjoint to (3) is

L∗(λ̄,p)v = 0, V(λ̄,p)v = 0 (9)

where the vector v = (v(0),v(1)) and the vectors
v(0) = (v(0), v′x(0), . . . , v(m−1)

x (0)) and v(1) =
(v(1), v′x(1), . . . , v(m−1)

x (1)) are composed of the val-
ues of the function v(x) and its derivatives taken at the
points x=0 and x=1.

2.2 Perturbation of eigenvalues
Now we assume that in the vicinity of the point p0

the spectrum of the problem (3) is discrete and con-
tains a µ-fold eigenvalue λ0 with the Keldysh chain
of length µ, consisting of the eigenfunction u0 and as-
sociated functions u1, . . ., uµ−1 [Keldysh, 1971], [Go-
hberg et al., 1982]. We denote L0=L(λ0,p0) and
U0=U(λ0,p0). The functions of the Keldysh chain
satisfy the boundary value problems [Mennicken and
Möller, 2003]

L0u0 = 0, U0u0 = 0 (10)

L0uj=−
j∑

r=1

1
r!
L

(r)
λ uj−r, U0uj=−

j∑
r=1

1
r!

U(r)
λ uj−r

(11)
where the partial derivatives are evaluated at λ=λ0 and
p=p0.



The Keldysh chain of the complex-conjugate eigen-
value λ0 of the adjoint operator L∗0, is defined by the
expressions

L∗
0v0 = 0, V0v0 = 0 (12)

L∗
0vj=−

j∑
r=1

1
r!
L∗(r)

λ̄
vj−r, V0vj=−

j∑
r=1

1
r!

V(r)

λ̄
vj−r

(13)
The functions of the Keldysh chain are related by the

orthogonality conditions

j∑
r=1

1
r!

(
(L(r)

λ uj−r, v0) + v∗
0Ṽ

∗
0U

(r)
λ uj−r

)
= 0

(14)
where (u, v)=

∫ 1

0
u(x)v(x)dx is Hermitian inner prod-

uct of functions u and v. We note that in the formulae
(11), (13), and (14) the index j = 1, 2, . . . , µ− 1.
In the n-dimensional parameter space we consider a

smooth curve, dependent on a real parameter ε ≥ 0

p(ε) = p0 + εṗ +
ε2

2
p̈ + o(ε2) (15)

where dot denotes differentiation with respect to ε,
and the derivatives are evaluated at ε = 0. Due to
the perturbation of parameters (15), the eigenvalue λ0
with the Keldysh chain of length µ takes an increment
represented by the Newton-Puiseux series [Vishik and
Lyusternik, 1960]

λ = λ0+λ1ε
1/µ+. . .+λµ−1ε

(µ−1)/µ+λµε+. . . (16)

The coefficient λ1 is found by the method of small per-
turbations as

λµ
1=− (L1u0, v0) + v∗

0Ṽ
∗
0U1u0∑µ

r=1
1
r!

((
∂rL
∂λr uµ−r, v0

)
+ v∗

0Ṽ
∗
0

∂rU
∂λr uµ−r

)
(17)

where

L1=
n∑

j=1

∂L

∂pj
ṗj , U1=

n∑
j=1

∂U
∂pj
ṗj (18)

and the derivatives are evaluated at λ = λ0, p = p0,
and ε = 0. In accordance with the formulae (16) and
(17) the eigenvalue λ0 splits due to perturbation (15) to
µ simple eigenvalues, if λ1 �= 0.
Under the constraint λ1 = 0 the double eigenvalue

(µ = 2) splits according to the formula λ = λ0 +

ελ2 + o(ε), where the coefficient λ2 is found from the
quadratic equation

λ2
2σ2 +λ2

(
(L1u0, v1)+(L1u1, v0)+

(
∂L1

∂λ
u0, v0

))

+λ2

(
v∗

1Ṽ
∗
0U1u0+v∗

0Ṽ
∗
0U1u1+v∗

0

∂(Ṽ∗U1)
∂λ

u0

)

+(L2u0, v0)+(L1ŵ2, v0)+(Ṽ0v0)∗(U2u0+U1ŵ2)=0
(19)

where

σ2=
2∑

r=1

1
r!

((
∂rL

∂λr
u2−r, v0

)
+v∗

0Ṽ
∗
0

∂rU
∂λr

u2−r

)
(20)

The operator L2 and the matrix U2 in equation (19)
have the form

L2 =
1
2

n∑
j=1

∂L

∂pj
p̈j +

1
2

n∑
j,t=1

∂2L

∂pj∂pt
ṗj ṗt (21)

U2 =
1
2

n∑
j=1

∂U
∂pj
p̈j +

1
2

n∑
j,t=1

∂2U
∂pj∂pt

ṗj ṗt (22)

The function ŵ2 is a solution to the boundary value
problem

L0ŵ2 = −L1u0, U0ŵ2 = −U1u0 (23)

where the vector ŵ2 = (ŵ2(0), ŵ2(1)) and

ŵ2(ξ) = (ŵ2(ξ), ŵ2
′
x(ξ), . . . , ŵ2

(m−1)
x (ξ)), ξ = 0, 1

(24)
Hence, we obtained explicit formulae describing split-

ting of multiple eigenvalues of the non-self-adjoint
boundary eigenvalue problem (3) with a change of pa-
rameters in the general and degenerate cases.

3 Non-conservative systems with small damping
Let us formulate the boundary eigenvalue problem

arising in stability problems for viscoelastic systems

L(λ, q,k)u ≡ N(q)u+ λD(k)u+ λ2Mu = 0 (25)

U(q,k, λ)u ≡ UN (q)u + λUD(k)u + λ2UMu = 0
(26)

The coefficients of the differential operators N , D,
and M of order m, and of the matrices UN , UD, and



Figure 1. Trajectories of eigenvalues for the undamped (fine lines) and damped (bold lines) systems

UM of dimensionm×2m are assumed to be real. The
operatorN and the matrix UN smoothly depend on the
real ”load” parameter q ≥ 0. The coefficients of the
differential operator D and the matrix UD are smooth
functions of the vector of real ”damping” parameters
k = (k1, . . . , kn−1), and k = 0 yields D(0) = 0,
UD(0) = 0. The operator M and the matrix UM

are parametrically independent. We assume that the
perturbation of the non-conservative system by small
dissipative forces (‖k‖ � 1) is regular [Vishik and
Lyusternik, 1960] and does not increase the order of
operator.
Let the unperturbed circulatory system

N(q)u+λ2Mu = 0, UN (q)u+λ2UMu = 0 (27)

have discrete spectrum for 0 ≤ q < q0, consisting
of simple purely imaginary eigenvalues λ (stability).
At q = q0 there exists a pair of double eigenvalues
±iω0, ω0>0 with the Keldysh chain of length 2, which
yields flutter instability [Bolotin, 1963], [Kirillov and
Seyranian, 2004]. All remaining eigenvalues ±iω0,j ,
ω0,j > 0 of the unperturbed system at q = q0 are as-
sumed to be simple and purely imaginary. Therefore,
in the absence of dissipative forces (k = 0) the value
q = q0 is the boundary between the stability and flutter
domains.
The eigenfunction u0 and associated function u1 of

the eigenvalue iω0 satisfy the equations (10) and (11).
The functions v0 and v1 of the adjoint Keldysh chain
are solutions of equations (12) and (13) with µ=2.
Note that the functions u0 and v0 are defined up to arbi-
trary multipliers and the functions u1 and v1 are defined
up to the terms γ1u0, γ2v0, respectively, where γ1 and
γ2 are arbitrary coefficients. We choose the real func-
tions u0 and v0, and the imaginary associated functions
u1 and v1, which satisfy the orthonormality conditions

2iω0(Mu1, v1)+(Mu0, v1)+(Mu1, v0)+v∗
0Ṽ

∗
0UMu1

+(Ṽ0v1+Ṽ′
λv0)∗(2iω0UMu1+UMu0)=0 (28)

2iω0((Mu1, v0) + v∗
0Ṽ

∗
0UMu1) = 1 (29)

This choice is possible, because the matrices V0 and
Ṽ0, defined by the expression (5) for λ=iω0, k=0
and q=q0, are real, and the matrices ∂V

∂λ
(λ̄0,p0) and

∂Ṽ
∂λ

(λ̄0,p0) have imaginary entries. This can be veri-
fied by expressing the inverse of the matrix polynomial
in formula (5) according to the extended Leverrier al-
gorithm [Barnett, 1989], [Wang and Lin, 1993]
Studying the splitting of the double eigenvalue iω0 of

the problem (25), (26) due to small variation of the
parameters k and q according to the formulae (16)–
(24) we find equations describing the movement of the
eigenvalues on the complex plane

(Imλ−ω0 + Reλ+ a/2)2

−(Imλ−ω0 − Reλ− a/2)2 = −2d (30)

(
Reλ+

a

2

)4

+
(
c−a

2

4

)(
Reλ+

a

2

)2

=
d2

4
(31)

(Imλ−ω0)
4 −

(
c−a

2

4

)
(Imλ−ω0)

2 =
d2

4
(32)

The quantities a, c, and d are determined by the expres-
sions

a= − ω0〈h,k〉, c=f̃(q−q0)+ω2
0〈Gk,k〉

d=ω0 (〈f ,k〉+〈Hk,k〉) (33)

where the angular brackets denote the inner product of
vectors in R

n−1. The components of the real vector f
and the real quantity f̃ are

f̃=
(
∂N

∂q
u0, v0

)
+v∗

0Ṽ
∗
0

∂UN

∂q
u0 (34)



fr=
(
∂D

∂kr
u0, v0

)
+v∗

0Ṽ
∗
0

∂UD

∂kr
u0 (35)

The components of the real vector h are defined by the
expressions

ihr=
(
∂D

∂kr
u1, v0

)
+

(
∂D

∂kr
u0, v1

)

+v∗
1Ṽ

∗
0

∂UD

∂kr
u0+v∗

0Ṽ
∗
0

∂UD

∂kr
u1+v∗

0

(
∂Ṽ
∂λ̄

)∗
∂UD

∂kr
u0

(36)
The entries of the real matrix H are

Hrσ =
1
2

(
∂2D

∂kr∂kσ
u0, v0

)
+

1
2
v∗

0Ṽ
∗
0

∂2UD

∂kr∂kσ
u0

(37)
and the real matrix G is determined by the expression

〈Gk̇, k̇〉 =
n−1∑
r=1

k̇r

((
∂D

∂kr
ŵ2, v0

)
+v∗

0Ṽ
∗
0

∂UD

∂kr
ŵ2

)
(38)

The function ŵ2 is a solution to the boundary value
problem

N(q0)ŵ2−ω2
0Mŵ2=

n−1∑
r=1

k̇r
∂D

∂kr
u0 (39)

UN (q0)ŵ2−ω2
0UM ŵ2=

n−1∑
r=1

k̇r
∂UD

∂kr
u0 (40)

For the circulatory system we have k=0 and in ac-
cordance with expression (33) the quantities a=0,
c=f̃(q−q0), and d=0. Then, equations (31), (32) yield

q ≤ q0 : Reλ = 0, Imλ = ω0 ±
√
f̃(q − q0) (41)

q ≥ q0 : Reλ = ±
√
−f̃(q − q0), Imλ = ω0 (42)

As it follows from equations (41) and (42) for f̃ < 0
and increasing load parameter q two simple purely
imaginary eigenvalues move along the imaginary axis
until they collide at q=q0. After the collision the
eigenvalues diverge in the directions perpendicular to
the imaginary axis of the complex plane, forming a
complex-conjugate pair (flutter) as shown in Figure 1.
Such a scenario is known as the strong interaction of

Figure 2. Whitney umbrella singularity of the critical load surface

eigenvalues and is a typical mechanism of the loss of
stability for circulatory systems [Seyranian and Maily-
baev, 2003], [Kirillov and Seyranian, 2004].
Introduction of damping (k �=0) changes the instabil-

ity mechanism. With the variation of the parameter
q and under the condition d �=0 the eigenvalues move
separately along the branches of hyperbola (30) on the
complex plane Figure 1. The hyperbola has two asymp-
totes Reλ= − a/2 and Imλ=ω0, where the quantity a
is given by the first of equations (33). When a > 0, one
of the two eigenvalues is in the left side of the complex
plane, while another one crosses the imaginary axis and
goes to the right side at q = qcr(k). Thus, the con-
dition a > 0 or, equivalently, 〈h,k〉<0 is necessary
for asymptotic stability. The critical value qcr of the
load parameter follows from equation (31) under the
assumption Reλ=0. This yields the relation ca2=d2,
which with the use of the explicit expressions (33) for
a, c, and d takes the form

qcr(k) = q0+
(〈f ,k〉+〈Hk,k〉)2

f̃〈h,k〉2
− ω

2
0

f̃
〈Gk,k〉 (43)

Therefore, the two eigenvalues are in the left side of
the complex plane, if q < qcr(k) and 〈h,k〉 < 0.
Asymptotic stability of the system (25), (26) also

depends on the behavior of the simple eigenvalues
±iω0,s, ω0,s>0 with a change of parameters. These
eigenvalues move to the left side of the complex plane
under the conditions

〈gs,k〉 > 0, s = 1, 2, . . . (44)

where the components of the real vector gs are

gs,r=
(
∂D

∂kr
u0,s, v0,s

)
+v∗

0,sṼ
∗
0

∂UD

∂kr
u0,s (45)

It is assumed that the eigenfunctions of the simple
eigenvalues satisfy the normalization conditions

2ω0,s(Mu0,s, v0,s) = 1, s = 1, 2, . . . (46)



In the case when {k : 〈f ,k〉 = 0, 〈h,k〉 < 0} ⊂ {k :
〈gs,k〉 > 0, s = 1, 2, . . .} small perturbation of pa-
rameters q and k shifts all simple eigenvalues ±iω0,s

to the left from the imaginary axis. Hence, the stabil-
ity of the system (25), (26) is determined only by the
splitting of the double eigenvalues ±iω0. In this case
the surface qcr(k1, . . . , kn−1) approximated by equa-
tion (43) is the boundary of the asymptotic stability do-
main in the vicinity of the point p0 = (0, . . . , 0, q0).
If the vector of damping parameters k consists of

only two components k1 and k2, the surface qcr(k1, k2)
given by the expression (43) has a Whitney umbrella
singularity at the point (0, 0, q0) of the space of param-
eters k1, k2, q, see Figure 2.
The level sets of the function (43) are the boundaries

of the stability domain in the space of the damping pa-
rameters k=(k1, . . . , kn−1). In particular, the level set
qcr=q0, where q0 is the critical load of the circulatory
system is given by the expression

〈f ,k〉 = ±ω0〈h,k〉
√

〈Gk,k〉 − 〈Hk,k〉 (47)

Equation (47) has real solutions, if 〈Gk,k〉 ≥ 0. Then,
the set (47) bounds the domain where the variation of
the vector of the damping parameters yields qcr(k) >
q0. This means stabilization of the non-conservative
system by small damping forces.
As it is clear from equation (43), the function qcr(k)

is singular at the point k = 0, and the critical load
as a function of n − 1 variable has no limit as k =
(k1, . . . , kn−1) tends to zero. However, homogene-
ity of the numerator and denominator of the rational
part of qcr(k) guarantees the existence of the limit
limε→0 qcr(εk̃) for any direction k̃ such that 〈h, k̃〉 �=
0. Substituting k = εk̃ into equation (43) and taking
the limit we find an explicit expression approximating
the jump in the critical load due to small damping

∆q ≡ q0 − lim
ε→0
qcr(εk̃) = − 1

f̃

〈f , k̃〉2
〈h, k̃〉2

(48)

Substitution of the expression Reλ=0 into equation
(30) yields approximation of the jump in the critical
frequency caused by small damping k=εk̃

∆ω ≡ ω0 − lim
ε→0
ωcr(εk̃) = − 〈f , k̃〉

〈h, k̃〉
(49)

Thus, for 〈f , k̃〉=0 the jumps in the critical load and
frequency do not happen (∆q=0,∆ω=0). According
to equation (43) the critical load in this case tends to q0
as ε → 0. However, the function qcr(εk̃) can decrease
for 〈f , k̃〉=0, if 〈Gk̃, k̃〉 < 0. For 〈Gk̃, k̃〉 > 0 the
critical load is increasing qcr(εk̃) ≥ q0 (stabilization).

4 Stability of a viscoelastic rod with different types
of external damping

As an example we consider transverse vibrations of
a cantilevered rod about vertical equilibrium position.
The rod is made of the viscoelastic Kelvin-Voight ma-
terial with the damping coefficient η ≥ 0. It is assumed
that the rod is loaded by the tangential follower force q
at its free end, as shown in Figure 4. In the following,
we will treat two cases, which differ only by the type
of the external damping force applied to the rod.

4.1 External damping due to resistance of a vis-
cous medium

Let us additionally assume that the rod is vibrating in
a viscous medium with the damping coefficient µ ≥ 0.
Investigation of stability of this system is reduced to
the study of the boundary eigenvalue problem written
in non-dimensional variables [Andreichikov and Yu-
dovich, 1974]

(1 + ηλ)u′′′′xxxx + qu′′xx + (λ2 + µλ)u = 0 (50)

u(0)=0, u′x(0)=0, u′′xx(1)=0, u′′′xxx(1)=0 (51)

When the damping is absent (η = µ = 0), the elas-
tic rod is stable for the follower loads in the interval
0 ≤ q < q0, where q0=20.05 [Beck, 1952]. At q = q0
the spectrum of the problem (50), (51) is discrete and
consists of the pair of the double eigenvalues ±iω0

(ω0=11.02), other eigenvalues ±iω0,s, s = 1, 2, . . .
being simple and purely imaginary. The first members
of the sequence of simple eigenfrequencies are

ω0,1 = 53.71, ω0,2 = 112.4, ω0,3 = 191.1. . . . (52)

Higher frequencies demonstrate the asymptotic behav-
ior [Andreichikov and Yudovich, 1974]

ω0,s = π2s2 +O(s), s→ ∞ (53)

The eigenfunctions of the problem (50), (51) in the un-
damped case are found in [Bolotin and Zhinzher, 1969]

u0,s(x)= cosh(ax)−cos(bx)+F (a sin(bx)−b sinh(ax))
(54)

v0,s(x)= cosh(ax)−cos(bx)+G(a sin(bx)−b sinh(ax))
(55)

where

F=
a2 cosh(a) + b2 cos(b)
ab(a sinh(a) + b sin(b))

(56)



Figure 3. Approximation (62), (63) of the asymptotic stability domain of a viscoelastic rod in a viscous medium

G=
b2 cosh(a) + a2 cos(b)
b3 sinh(a) + a3 sin(b)

(57)

and the coefficients a and b are

a =

√
−q

2
+

√
q2

4
+ ω2

0,s, b =

√
q

2
+

√
q2

4
+ ω2

0,s

(58)
For high eigenfrequencies the eigenfunctions are rep-

resented by the asymptotic expressions [Andreichikov
and Yudovich, 1974]

u0,s=sin(sπx)+O(s−1)

v0,s=sin(sπx)+O(s−1), s→ ∞ (59)

Substitution of the eigenvalues (52), (53) and the cor-
responding eigenfunctions (54), (55) into equations
(45) yields the vectors gs

g1 = (35.44, 0.009), g2 = (65.03, 0.004), . . . (60)

gs =
1
2

(
s2π2 + o(s2), s−2π−2 + o(s−2)

)
, s→ ∞

(61)
Inequalities (44) with the vector k = (η, µ) and the
vectors gs determined by (60) and (61) give the condi-
tions for the simple eigenvalues to be in the left side of
the complex plane.
Substitution of the quantities (34)–(38) computed with

the use of the eigenfunctions and associated functions
of the double eigenvalue of the problem (50), (51) with-
out damping found in [Kirillov and Seyranian, 2004]
into the formula (43) yields approximation of the criti-
cal load as a function of damping parameters

qcr(η, µ)=q0− 1902η2

(14.34η + 0.091µ)2
+12.68ηµ+0.053µ2

(62)

Combining the stability conditions given by simple
and double eigenvalues we find that the viscoelastic rod
in viscous medium is asymptotically stable in the vicin-
ity of the point η = 0, µ = 0, q = q0, if the following
inequalities are satisfied

η > 0, µ > −157.9η, q < qcr(η, µ) (63)

Note that for positive damping parameters the first
two conditions (63) are satisfied. Approximation of the
asymptotic stability domain (63) in the space of the pa-
rameters η, µ, q is shown in Figure 3. One can see
the Whitney umbrella singularity at the point η = 0,
µ = 0, q = q0. Figure 3 clearly shows the existence of
the domain where qcr(η, µ) > q0. Indeed, for η = 0
from equation (62) we have qcr = q0 + 0.053µ2 ≥ q0.
We can conclude that small internal (η) and external
(µ) damping can stabilize the viscoelastic rod loaded
by the follower force.
For µ = 0 and η → 0 expression (62) gives the crit-

ical load qcr = 10.8 < q0 = 20.05, which is in a
good agreement with the value qcr = 10.94 numeri-
cally found in [Bolotin and Zhinzher, 1969], [Andre-
ichikov and Yudovich, 1974]. Thus, formula (62) gives
a good approximation to the jump in the critical load
due to small damping.

4.2 External damping due to a dash-pot
In this case we neglect the influence of the damping

due to resistance of the medium. Instead, we assume
that a dash-pot with the damping coefficient δ is at-
tached to the free end of the rod, Figure 4. This sys-
tem is governed by the boundary eigenvalue problem
[Panovko and Sorokin, 1987], [Zhinzher, 1994]

(1 + ηλ)u′′′′xxxx + qu′′xx + λ2u = 0 (64)

u(0)=u′x(0)=0, u′′xx(1)=(1+ηλ)u′′′xxx(1)−δλu(1)=0
(65)



Figure 4. Approximation (69), (70) of the asymptotic stability domain of a viscoelastic rod with a dash-pot at the free end

Substituting the eigenvalues (52), (53) and the corre-
sponding eigenfunctions into equations (45) we get the
vectors gs

g1 = (35.44, 0.043), g2 = (65.03, 0.020), . . . (66)

gs =
1
2

(
s2π2 + o(s2), o(s−2)

)
, s→ ∞ (67)

Inequalities (44) with the vector k = (η, δ) and the
vectors gs determined by (66) and (67) give the condi-
tions for the simple eigenvalues to be in the left side of
the complex plane

η > 0, δ > −820.5η (68)

Using in equations (34)–(38) the eigenfunctions and
associated functions for the double eigenvalue ω0 =
11.02 of the undamped rod at q = 20.05 found in [Kir-
illov and Seyranian, 2004] we find the coefficients of
the formula (43). Then, the critical load as a function
of internal (η) and external (δ) damping is

qcr(η, δ)=q0− (43.61η+0.719δ)2

(14.34η+0.134δ)2
−1368η2+248.8δη

(69)
Combining the stability conditions following from the
study of behavior of the simple and double eigenvalues
we get the approximation of the asymptotic stability
domain

η > 0, δ > −107.0η, q < qcr(η, δ) (70)

The stability domain described by conditions (70) is
shown in Figure 4. One can see that the critical load
as a function of damping parameters has a singularity
at the origin. According to (69) the critical load de-
creases in a discontinuous manner for any combination

of positive damping parameters η and δ in the vicinity
of the origin. Thus, small external damping caused by a
dash-pot destabilizes the rod, contrary to the resistance
of a medium, which has a stabilizing effect.

5 Conclusion
We have studied continuous non-conservative me-

chanical systems with small internal and external
damping. Destabilizing and stabilizing effects of small
damping are analytically described with the use of
the bifurcation theory of multiple eigenvalues devel-
oped for non-self-adjoint boundary eigenvalue prob-
lems. Two mechanical examples illustrate the effec-
tiveness of the developed approach. It is shown that
small external damping caused by a dash-pot destabi-
lizes a viscoelastic rod loaded by the follower force,
while the resistance of a medium has a stabilizing ef-
fect.
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