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Summary Linearized models of rotating elastic bodies of revolupmssess a spectrum that forms a mesh in the plane ‘frequency’
versus ‘gyroscopic parameter’ with double semi-simplesefgequencies at the nodes. In contact with the frictiorsp#tk rotating
media, for example the singing wine glass or the squealisglaiake, start to vibrate due to subcritical flutter indiigbiin the present
paper a sensitivity analysis of the spectral mesh is deeeldpr explicit predicting the onset of the friction-inducimstabilities. The

key role of indefinite damping and non-conservative poséidorces in the development and localization of the sdbatiflutter is
clarified. Itis shown that the instability scenarios, rdedan the general two-dimensional case, can take placérafaore complicated
finite-dimensional and distributed models of rotating syetnic bodies in frictional contact.

SPECTRAL MESHES OF ROTATING ELASTIC BODIES OF REVOLUTION

In 1638 Galileo Galilei remarked that “a glass of water mayraele to emit a tone merely by the friction of the finger-tip
upon the rim of the glass ”. Shortly after Rayleigh qualitaty described the onset of bending waves in the singing wine
glass by the friction, applied in the circumferential difen, and pointed out the proximity of the main audible fregqay

of the glass to the one of the spectrum of its free vibrati@pgrry and Lanchester invented a disc brake [7]. Nowadays,
disc brake squeal—in general, a sound with one dominant fnegfluency—is the primary subject of investigations in
acoustics of friction of rotating elastic bodies of revadut[7].

The author of one of the first theories of squeal, Spurr [1peeinentally observed that a rotating wine glass sang when
the dynamic friction coefficient was a decreasing functibthe velocity [2]. Linearizing the system with the negative
friction-velocity gradient produces an eigenvalue prableith anindefinitedamping matrix. Effectively negatively
damped vibration modes may lead to complex eigenvaluespuatiitive real parts and cause flutter instability, placing
the fall in the dynamic friction coefficient with increasimglocity among the main empirical reasons for disc brake
squeal, categorized by Kinkaid et al [7]. Two more reasoasian-conservativpositional forces and theplitting of the
frequency of the doublet modesthe symmetric disc when a friction force was applied [7].

Due to gyroscopic splitting of the doublet modes to the pafrsimple eigenvalues corresponding to the forward and
backward traveling waves, which propagate along the cifetential direction, double semi-simple eigenvaluesiogte
again at non-zero angular velocities, forming the nodef@gpectral mesk8] of the crossed frequency curves in the
plane ‘frequency’ versus ‘angular velocity’, Fig 1(a).(MYhen the speed of rotation exceeds the critical speed th@en
backward wave travels slower than the disc rotation speddppears to be traveling forward with the negative effectiv
energy, while that of the forward and backward traveling egais positive [3]. In thesubcritical speed region all the
crossings of the frequency curves correspond to the foraaddbackward modes of the same signature, while in the
supercriticalregion there exist crossings formed by the reflected andaiatwnodes of opposite signature. According
to Krein’s theory [3], under Hamiltonian perturbations ttr@ssings in the subcritical region veer away iatmided
crossinggstability), while in the supercritical region the crogssnof the modes of opposite signature turn into the rings
of complex eigenvaluesbubbles of instability3]—leading to asupercritical flutterimportant in the high speed appli-
cations like circular saws and computer storage deviceshdmproblems of acoustics of frictionsabcritical flutteris
(un)desirable as a source of instability at low speeds, kvbé occur due to non-Hamiltonian perturbations [10]. The
sensitivity analysis of the present contribution shows Heswnodes of the spectral mesh, situated in the subcridogle,

can serve as the “keyboard" of a rotating elastic body oflcesian.

COLLAPSE OF DISSIPATION-INDUCED BUBBLES OF INSTABILITY IN THE SUBCRITICAL RANGE

Consider a non-dimensional equation of a hon-conservayisiem originating as a two-mode approximation of the mod-
els of rotating elastic bodies of revolution in frictionalrtact after their linearization and discretization [4657, 9]

%+ (2QG + 6D)x + (8> — QI + kK + vN)x = 0, 1)

where a dot over a symbol denotes time differentiatiog, R?, andI is the identity matrix. The real matric& = D7,

G = -GT, K = K7, andN = —NT are related to dissipative (damping), gyroscopic, posérgind non-conservative
positional (circulatory) forces with magnitudes contedllby scaling factors, €2, s, andv respectively;3 > 0 is the
frequency of free vibrations of the potential system whea Q2 = x = v = 0. Without loss of generality we assume
det G = det N = 1. Separating time by setting(t) = uexp(\t) we arrive at the eigenvalue probleminThe operator
Lo(Q) = I)\?2 + 2\QG + (3% — Q2)I of the unperturbed gyroscopic system has four eigenv@lﬁes i3 +£1iQ and
AE = —i +iQ, forming the spectral mesh in the pla(f@, Im)), Fig. 1(a). Two nodes of the mesh in the subcritical
range|2] < g atQ = £y = 0 correspond to the double semi-simple eigenvalies +i3 with two orthogonal
eigenvectors. Considering the splitting of the double migiue A = i3 under small perturbation of the gyroscopic
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Figure 1. Deformation of the spectral mesh of a two-dimensional systa)—(d); unfolding of the stability domain of the two-
dimensional system with the change of the damping matrimfiredefinite to positive definite (e)—(g); 30 modes of the s@éenesh
of a rotating circular string [5] with the nodes in the subd @upercritical regions marked by white and black dots retsgy (h).

systemL () + AL(2) with AL(Q) = éAD + kK + vN ~ ¢, wheree = ||AL(0)||, we explicitly describe the
deformation of the spectral mesh by small dissipative, c@mservative, and potential perturbations
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wherep; o andp; o are the eigenvalues of the matridBsand K, respectively. In the vicinity of the “keys” of the
“keyboard” damping creates eigenvalue bubbles, showndn Hb) by the dashed lines, which are dangerous by the
ability to get positive real parts in presence of hon-covesire positional forces or even without them, if the dangpm
indefinite. As is seen in Fig. 1(b)—(d), the activated andapaled bubbles of instability yield the subcritical fluttéra
rotating medium, forcing it to vibrate at a frequengy. < w < w7, and at the angular velocity? < Q2 , where
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The first of equations (4) approximates the boundary of theaio of asymptotic stability with a singularity at the ongi
which unfolds when the damping matrix is changing from trgeiinite to definite, as shown in Fig. 1(e)—(g).

The proposed approach provides guidance to a classificatidissipative and non-conservative perturbations byrthei
ability to cause the subcritical flutter, which can be usedtfecking and correcting particular models of disc braket a
other rotating elastic bodies of revolution in frictionaltact.
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