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SUBCRITICAL FLUTTER IN THE PROBLEMS OF ACOUSTICS OF FRICTION
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Summary Linearized models of rotating elastic bodies of revolutionpossess a spectrum that forms a mesh in the plane ‘frequency’
versus ‘gyroscopic parameter’ with double semi-simple eigenfrequencies at the nodes. In contact with the friction pads, the rotating
media, for example the singing wine glass or the squealing disc brake, start to vibrate due to subcritical flutter instability. In the present
paper a sensitivity analysis of the spectral mesh is developed for explicit predicting the onset of the friction-induced instabilities. The
key role of indefinite damping and non-conservative positional forces in the development and localization of the subcritical flutter is
clarified. It is shown that the instability scenarios, revealed in the general two-dimensional case, can take place alsoin more complicated
finite-dimensional and distributed models of rotating symmetric bodies in frictional contact.

SPECTRAL MESHES OF ROTATING ELASTIC BODIES OF REVOLUTION

In 1638 Galileo Galilei remarked that “a glass of water may bemade to emit a tone merely by the friction of the finger-tip
upon the rim of the glass ”. Shortly after Rayleigh qualitatively described the onset of bending waves in the singing wine
glass by the friction, applied in the circumferential direction, and pointed out the proximity of the main audible frequency
of the glass to the one of the spectrum of its free vibrations,Sperry and Lanchester invented a disc brake [7]. Nowadays,
disc brake squeal—in general, a sound with one dominant highfrequency—is the primary subject of investigations in
acoustics of friction of rotating elastic bodies of revolution [7].
The author of one of the first theories of squeal, Spurr [1], experimentally observed that a rotating wine glass sang when
the dynamic friction coefficient was a decreasing function of the velocity [2]. Linearizing the system with the negative
friction-velocity gradient produces an eigenvalue problem with an indefinitedamping matrix. Effectively negatively
damped vibration modes may lead to complex eigenvalues withpositive real parts and cause flutter instability, placing
the fall in the dynamic friction coefficient with increasingvelocity among the main empirical reasons for disc brake
squeal, categorized by Kinkaid et al [7]. Two more reasons arenon-conservativepositional forces and thesplitting of the
frequency of the doublet modesof the symmetric disc when a friction force was applied [7].
Due to gyroscopic splitting of the doublet modes to the pairsof simple eigenvalues corresponding to the forward and
backward traveling waves, which propagate along the circumferential direction, double semi-simple eigenvalues originate
again at non-zero angular velocities, forming the nodes of the spectral mesh[8] of the crossed frequency curves in the
plane ‘frequency’ versus ‘angular velocity’, Fig 1(a),(h). When the speed of rotation exceeds the critical speed, thenthe
backward wave travels slower than the disc rotation speed and appears to be traveling forward with the negative effective
energy, while that of the forward and backward traveling waves is positive [3]. In thesubcritical speed region all the
crossings of the frequency curves correspond to the forwardand backward modes of the same signature, while in the
supercriticalregion there exist crossings formed by the reflected and forward modes of opposite signature. According
to Krein’s theory [3], under Hamiltonian perturbations thecrossings in the subcritical region veer away intoavoided
crossings(stability), while in the supercritical region the crossings of the modes of opposite signature turn into the rings
of complex eigenvalues—bubbles of instability[3]—leading to asupercritical flutterimportant in the high speed appli-
cations like circular saws and computer storage devices. Inthe problems of acoustics of friction asubcritical flutteris
(un)desirable as a source of instability at low speeds, which can occur due to non-Hamiltonian perturbations [10]. The
sensitivity analysis of the present contribution shows howthe nodes of the spectral mesh, situated in the subcritical range,
can serve as the “keyboard" of a rotating elastic body of revolution.

COLLAPSE OF DISSIPATION-INDUCED BUBBLES OF INSTABILITY IN THE SUBCRITICAL RANGE

Consider a non-dimensional equation of a non-conservativesystem originating as a two-mode approximation of the mod-
els of rotating elastic bodies of revolution in frictional contact after their linearization and discretization [4, 5,6, 7, 9]

ẍ + (2ΩG + δD)ẋ + ((β2 − Ω2)I + κK + νN)x = 0, (1)

where a dot over a symbol denotes time differentiation,x ∈ R
2, andI is the identity matrix. The real matricesD = D

T ,
G = −G

T , K = K
T , andN = −N

T are related to dissipative (damping), gyroscopic, potential, and non-conservative
positional (circulatory) forces with magnitudes controlled by scaling factorsδ, Ω, κ, andν respectively;β > 0 is the
frequency of free vibrations of the potential system whenδ = Ω = κ = ν = 0. Without loss of generality we assume
detG = detN = 1. Separating time by settingx(t) = u exp(λt) we arrive at the eigenvalue problem inλ. The operator
L0(Ω) = Iλ2 + 2λΩG + (β2 − Ω2)I of the unperturbed gyroscopic system has four eigenvaluesλ±

p = iβ ± iΩ and
λ±

n = −iβ ± iΩ, forming the spectral mesh in the plane(Ω, Imλ), Fig. 1(a). Two nodes of the mesh in the subcritical
range|Ω| < β at Ω = Ω0 = 0 correspond to the double semi-simple eigenvaluesλ = ±iβ with two orthogonal
eigenvectors. Considering the splitting of the double eigenvalueλ = iβ under small perturbation of the gyroscopic






Figure 1. Deformation of the spectral mesh of a two-dimensional system (a)–(d); unfolding of the stability domain of the two-
dimensional system with the change of the damping matrix from indefinite to positive definite (e)–(g); 30 modes of the spectral mesh
of a rotating circular string [5] with the nodes in the sub- and supercritical regions marked by white and black dots respectively (h).

systemL0(Ω) + ∆L(Ω) with ∆L(Ω) = δλD + κK + νN ∼ ε, whereε = ‖∆L(0)‖, we explicitly describe the
deformation of the spectral mesh by small dissipative, non-conservative, and potential perturbations
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whereµ1,2 andρ1,2 are the eigenvalues of the matricesD andK, respectively. In the vicinity of the “keys” of the
“keyboard” damping creates eigenvalue bubbles, shown in Fig. 1(b) by the dashed lines, which are dangerous by the
ability to get positive real parts in presence of non-conservative positional forces or even without them, if the damping is
indefinite. As is seen in Fig. 1(b)–(d), the activated and collapsed bubbles of instability yield the subcritical flutterof a
rotating medium, forcing it to vibrate at a frequencyω−

cr < ω < ω+
cr and at the angular velocityΩ2 < Ω2

cr, where
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The first of equations (4) approximates the boundary of the domain of asymptotic stability with a singularity at the origin,
which unfolds when the damping matrix is changing from the indefinite to definite, as shown in Fig. 1(e)–(g).
The proposed approach provides guidance to a classificationof dissipative and non-conservative perturbations by their
ability to cause the subcritical flutter, which can be used for checking and correcting particular models of disc brakes and
other rotating elastic bodies of revolution in frictional contact.

References

[1] Spurr R.T.: A theory of brake squeal.Proc. Inst. Mech. Engrs(AD) 1:33–52, 1961.
[2] Spurr R.T.: The ringing of wine glasses.Wear4:150–153, 1961
[3] MacKay R.S.: Stability of equilibria of Hamiltonian systems. InNonlinear Phenomena and Chaos(ed. S. Sarkar), Hilger, Bristol:254–270, 1986.
[4] Chan S.N., Mottershead J.E., Cartmell M.P.: Parametricresonances at subcritical speeds in discs with rotating frictional loads.Proc. Inst. Mech.

Engrs C208:417–425, 1994.
[5] Yang L., Hutton S.G.: Interactions between an idealizedrotating string and stationary constraints.J. Sound Vibr.185(1):139–154, 1995.
[6] Xiong L.G., Chen H., Yi J.M.: Instability mechanism of a rotating disc subjected to various transverse interactive forces.J. Mater. Proc. Techn.

129(1):534–538, 2002.
[7] Kinkaid N.M., O’Reilly O.M., Papadopoulos P.: Automotive disc brake squeal.J. Sound Vib.267: 105–166, 2003.
[8] Günther U., Kirillov O.N.: A Krein space related perturbation theory for MHDα

2-dynamos and resonant unfolding of diabolical points.J. Phys.
A: Math. Gen.39(32): 10057–10076, 2006.

[9] von Wagner U., Hochlenert D., Hagedorn P.: Minimal models for disk brake squeal.J. Sound Vibr.302(3): 527–539, 2007.
[10] Kirillov O.N.: Destabilization paradox due to breaking the Hamiltonian and reversible symmetry.Int. J. of Non-Lin. Mech.42(1):71–87, 2007.


