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Abstract

Linearized models of elastic bodies of revolution, spigrétbout their symmetrical axes, possess the eigen-
frequency plots with respect to the rotational speed, wfocim a mesh with double semi-simple eigenfre-
guencies at the nodes. At contact with friction pads, thatirmy continua, such as the singing wine glass
or the squealing disc/drum brake, start to vibrate becatigeesubcritical flutter instability. In the present
paper a sensitivity analysis of the spectral mesh is deeeldpr the explicit predicting the onset of instabil-
ity. The determining role of the Krein signature of the eigdues involved in the crossings as well as the
key role of the indefinite damping and non-conservativetosl forces is clarified in the development and
localization of the subcritical flutter. It is establishdwt even when the rotational symmetry is broken by the
variation of the structure of the stiffness matrix and tfene the eigenvalues of the undamped gyroscopic
system avoid crossings, its perturbation by the dissipdtivces with the indefinite matrix can cause flutter
instability in the subcritical region.

1 Introduction

Consider an autonomous linear gyroscopic system desgr#inirall oscillations in the discretized models of
rotating elastic bodies of revolution considered in a statry frame [1, 2]

%4 20Gx + (P + Q’°GHx =0, x =R, (1)
where(} is the speed of rotatio®P=diag(w?, w?, w3, w3, ..., w2, w2) = PT is the matrix of potential forces,

andG=diag(J,2J,...,nJ) = —G7 is the matrix of gyroscopic forces with

0 -1
J- ( ) ) | @
Due to rotational symmetry of the rotor and periodic boupdamditions the eigenvalues < w3 < --- <
w2 | < w? of the matrixP are double semi-simple, that is each eigenvalgi@as two linearly independent

n—1
eigenvectors [3, 4]. The distribution of the doublets as a function ofs is usually different for various
bodies of revolution. For example, = s corresponds to the spectrum of a circular string [5]. Nédnadess,

there exist isospectral bodies, because "one cannot heah#pe of a drum” [6].
Separating time by the substitutian= u exp(At), we arrive at the eigenvalue problem for the operaipr

Lo(Q)u := (IN? + 2QG\ + P + Q2G%)u = 0. (3)
As a consequence of the block-diagonal structure of theiceazx andP the eigenvalues di, are

AF = iw, £isQ, AT = —iw, F isq, 4)
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where bar over a symbol denotes complex conjugate. Rotedioses the doublet mod&sw, to split. The
newborn pair of simple eigenvalueg™ corresponds to the forward and backward traveling waveghwh
propagate along the circumferential direction [7]. Viewiem the stationary frame, the frequency of the
forward traveling wave appears to increase and that of tlekvierd traveling wave appears to decrease,
as the spin increases. Double eigenvalues thus originai@ agnon-zero angular velocities, forming the
nodes of thespectral meski8, 9] of the crossed frequency curves in the plane ‘frequewersus ‘angular
velocity’. The spectral meshes are characteristic for satdting symmetric continua as circular strings [5],
discs [10, 11, 12], rings and cylindrical and hemisphergtalls [13], vortex rings [14], and a spherically
symmetrica2-dynamo of magnetohydrodynamics [8].

At the angular velocitf2¢" = w, /s the frequency of theth backward traveling wave vanishes to z&xg =

Af = 0), so that the wave remains stationary in the non-rotatingétaThe lowest one of such velocities,
Q.r, is calledcritical [12]. When the speed of rotation exceeds the critical spbedyackward wave travels
slower than the disc rotation speed and appears to be tigvieliward (reflected wave), corresponding to
the eigenvalues\s. The effective energy of the reflected wave is negative aatl d¢hthe forward and
backward traveling waves is positive [15]. Therefore, ie subcritical speed regionQ?| < ., all the
crossings of the frequency curves correspond to the fonaadibackward modes of the same signature,
while in the supercritical speed region)| > €., there exist crossings that are formed by the reflected
and forward/backward modes of opposite signature. Acogrth Krein's theory [15], under Hamiltonian
perturbations like the mass and stiffness constraints, fh@] crossings in the subcritical region veer away
into avoided crossinggstability), while in the supercritical region the crogginof the modes of opposite
signature turn into the rings of complex eigenvaludsmibbles of instability15]—Ileading to flutter known
also as the ‘mass and stiffness instabilities’ [10].

A supercritical flutteris important for the high speed applications like circulaws and computer storage
devices, while in the acoustics of friction of rotating ¢dla®odies of revolution aubcritical flutteris either
desirable as a source of instability at low speeds as in tbe chmusical instruments like the singing wine
glass and a glass harmonica [16, 17] or undesirable as inatfe af the squelaing disc- and drum brakes
[12, 18, 19, 20, 21]. Being prohibited by Krein's theory foetHamiltonian systems, subcritical flutter can
occur, however, due to non-Hamiltonian, i.e. dissipativd aon-conservative, perturbations [22].

The author of one of the first theories of squeal [23], Spupeexnentally observed that a rotating wine glass
sang when the dynamic friction coefficient was a decreasingtion of the velocity [16]. Linearizing the
system with the negative friction-velocity gradient prods an eigenvalue problem with emlefinitematrix

of damping forces. Effectively negatively damped vibratinodes may lead to complex eigenvalues with
positive real parts and cause flutter instability [24, 25,28. The growth in amplitude will be limited in
practice by some non-linearity. Since the engineeringgies often more concerned with if a brake may
squeal and less with how loud the brake may squeal, a comigerwalue analysis offers for it a pragmatic
approach used currently by most of production work in ingug0].

The fall in the dynamic friction coefficient with increasinglocity is among the main empirical reasons for
disc brake squeal, categorized in [19]. One mongois-conservativ@ositional forces, which first appeared
in the linear models by North [28]. The binary flutter in sucbdels happens through the coalescence of
two modes according to the reversible Hopf bifurcation acen[27, 29, 30]. Inclusion of damping leads
to the imperfect merging of modes [31] and to the flutter thfothe dissipative Hopf bifurcation, which is
connected to the reversible one by means of the Whitney dlalsiagularity [29, 32, 33]. The destabilizing
role of non-potential positional forces in dynamical sysseincluding the tippe top inversion and the rising
egg phenomena of rotordynamics, was emphasized recer8y]insee also [26, 35, 36].

Historically, in the study of brake squeal, the symmetry ted tlisc as well as the effects of its rotation
were frequently ignored. The latter in the assumption thatléw rotor speed range which squeal tends to
occur does not warrant this complication [20]. However,rathé case of a singing wine glass, experiments
revealed the proximity of the squealing frequency and mbdee of brake’s rotor for low rotational speeds to
a natural frequency and corresponding mode shape of arstatiootor [12, 19, 20, 37, 38]. Since an axially
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symmetric rotor possesses pairs of identical frequen€lbaan et al. [39] proposed another mechanism of
squeal in the classification of Kinkaid et al. [19] based angplitting of the frequency of the doublet modes
in the symmetric disc when a friction force was applied. Tpktsg could lead to flutter equated to brake
squeal, which in general is a sound with one dominant frequ§t?, 18, 19, 20, 21].

In 1990s subcritical flutter was detected by numerical apghes in the new models of disc brakes that
incorporated gyroscopic and centripetal effects and aotodated more than one squeal mechanism through
the splitting the doublet modes of a disc by dissipative amtteconservative perturbations coming from the
negative friction-velocity gradient and frictional fol@r load. The models include both the case when
the point-wise or distributed friction pads are rotatecduacba stationary disc, affecting a point or a sector
of it, and when the disc rotates past the stationary fricpads, see [19, 20, 21, 39, 40], and references
therein. Linearization and discretization of the lattexssl of the models frequently results in the equation
(1) perturbed by the matricd® = D”, K = K’ andN = —N7 corresponding to dissipative, potential
and non-conservative positional forces

%+ (2QG + D)% + (P + Q*G? + kK + vN)x = 0, (5)

where the parameters «, andv control the magnitudes of the perturbations. The matrde¥, andN
can be assumed to be functions(bf The transformatiox = Az := exp(—2Gt)z yields an equivalent to
(5) potential system with the periodic perturbation, sele 2]

7+ 6D(t)z + (P — 6QD ()G (t) + sK(t) + vN(t))z = 0, (6)

withD(t) = A~'DA, G(t) = A"!GA = G, K(t) = A"'KA,N(t) = A"!NA, because in the rotating
frame the load appears to be moving periodically in the onrfewencial direction. Fozn = 2 degrees of
freedom the matri?N(¢) = IN and the periodic stiffness and damping matrices are

2K(t) = diag(trK, trK) + (K + JKJ) cos(2Qt) 4+ (JK — KJ) sin(20Q¢),
9D(t) = diag(trD,trD) + (D + JDJ) cos(2Qt) 4+ (JD — DJ) sin(2Q¢). @)

In the absence of dissipatiy@ = 0) and non-conservative position@t = 0) terms, (6) is a Mathieu-
like equation with the periodic in time potential posseggdarametric resonances in the supercritcal range
12| > Q.. Inclusion of parametrically excited damping and non-eowative terms makes the equation (6)
a less traditional parametric resonance problem due todssilgility of instability in both the subcritical and
supercritical regions [21, 39]. Nevertheless, the eqaived of the two dual descriptions enables us to reduce
the investigation of the parametric resonance in the naoraumnous system (6) to a considerably simpler
study of the stability of the autonomous system (5), cf. [42libcritical parametric resonance domains of
equation (6) correspond to the regions of subcritical fiugteéhe system (5).

In the present paper we propose a sensitivity analysis asytbtem (5) based on the perturbation theory of
multiple eigenvalues of non-self-adjoint operators [33443], which is an efficient tool for investigation of
the subcritical flutter both in the finite-dimensional andtdbuted models. Instead of deriving the partic-
ular operators of dissipative and circulatory forces byusate modeling of the frictional contact and then
studying their effect on the spectrum and stability, we e@wu inverse problem. Assumiagpriori only the
existence of distinct squeal frequencies close to the @oeigienfrequencies of the uloaded body we find
the structure of the dissipative and non-conservative aipes whose action causes flutter in the subcriti-
cal region near the nodes of the spectral mesh. We descridgtiaally the movement of eigenvalues and
the deformation of the spectral mesh. Using this data, weoppate the stability domain in the space of
system’s parameters.

Confirming that the perturbation by conservative forcesyialu flutter only in the supercritical region, we
come to new qualitative conclusions. ROk 0 there exist indefinite damping matrices of such a structure
that always causes the subcritical flutter even when thenegdiee branches of the unperturbed gyroscopic
system are well-separated due to changes in the stiffness it break the rotational symmetry of the
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Figure 1:2n = 2: (a) spectral mesh and its conservative deformation-(0) in the case when (kK is
positive-definite, (CK is positive semi-definite, and (& is indefinite.

rotor. In the presence of indefinite damping the regions dfeftun the three-dimensional space of the pa-
rameters?, ¢, andx turn out to have a conical shape. The inclination of the camd#ferent in the sub- and
supercritical ranges @2 and it is substantially determined by the Krein signaturthefeigenvalues involved
in the crossings of eigenvalues corresponding to the apEhxee cones. Due to the different inclination the
zones of the supercritical flutter are visible in the plane 0 whereas the intersection of this plane with the
zones of subcritical flutter can be an empty set. A discovsirgularity of the stability boundary allows for
the combinations of dissipative and non-conservativetioosil forces yielding the subcritical flutter insta-
bility in the vicinity of the nodes of the spectral mesh evetthe case, when the damping matrix is positive
definite with some of its eigenvalues close to zero. The ¥émisand negative eigenvalues of the damping
matrix encourage the development of the subcritical fluttbile zero eigenvalues of the matrix of non-
conservative positional forces suppress it. The propopedoach provides guidance to a classification of
dissipative and non-conservative perturbations by thmsiityato cause the subcritical flutter, which is helpful
in checking and correcting particular models of disc braded other rotating elastic bodies of revolution
having frictional contact.

2 Dissipation-induced subcritical flutter in the case of 2n =2d.o.f.

Owing to its relative simplicity the case of two degrees ekeflom(n = 1) allows for the detailed stability
analysis. Although the complete investigation of the saéchesh and its deformation under both Hamilto-
nian and non-Hamiltonian perturbations in system (5) witiiteary number of degrees of freedom would be
very desirable for applications, a restriction to two disiens is justified for demonstrating the basic ideas
of our theory. On the other hand, two-dimensional modelswédely employed in acoustics of friction [30],
while our perturbative approach does not depend on the nuafilsegrees of freedom.

Forn = 1 the spectrum of the unperturbed operdig(2) consists of four branches. In the subcritical region
Q] < Q. = w; they cross in the plang?, Im\) at the pointg0, +w; ), see Fig. 1(a). Assuming without
loss in generalityN = J, we consider a general perturbation of the gyroscopic sy$tg((2) + AL(Q).
The size of the perturbatioAL((2) = AD + kK + vN ~ ¢ is small, where = ||AL(0)|| is the Frobenius
norm of the perturbation & = 0. For smallQ2 ande perturbation of the double semi-simple eigenvalue
A = w7 with two orthogonal eigenvectors, andus

1 [0 1 1 8
v (1) (0) o

is described by the asymptotic formula [4]

Q(fi— o2
\E :iwl—i-iQfH + fo2 +i€11+€22 iz‘\/( (f11 f22)4+ €11 — €22)

P 5 2 + (Qf12 + €12)(Qf21 + €21), (9)
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where the quantitieg;;, are

70Lo(82)

fik =y, = 2iwu} Gu;. (10)

J
o0 Q=0, A=iw1

Due to the propertyG = —G” with the vectors (8) the formula (10) yield§; = f»o = 0 and fio, =
— f21 = i. The coefficients ;;, are small complex numbers of order

ejx = uj AL(0)u; = iwdu} Du; + kuj Ku; + vui Nu,. (11)

With the vectors (8) we obtain

R —R
Re)\:—ul+u26i\/|c|+ o Imh—w A2y [ldZRee (12)
4 2 4w 2
_ 2 — o\ 2 2 Q 2trKD — trKtrD
Rec — HM1zH2 ) s2 _ (P12P2 H2_Q2+V_27 Ime = X _ 52 S , (13)
4 4w h w1 8w

where the eigenvalugs, ; andp, » of the matricedD andK satisfy the equations

p? — ptrD + det D = 0, p* — ptrK + det K = 0. (24)

Formulas (12) take into account the forces of all types ampli@tty describe the perturbed spectrum by

means of the eigenelements and the derivatives of the apevih respect to parameters, calculated solely
at the nodes of the spectral mesh. This is more efficient fecri@ng the veering and merging of eigenvalue
branches [44], than the sensitivity analysis of simple migiies of the works [5], [45].

2.1 Conservative deformation of the spectral mesh

Since the eigenvalues at the crossings in the subcritiogleraave the same Krein signature, they veer away
under potential perturbationK, destroying the rotational symmetry of the body, as showrign 1(b)-(c).
The conservative perturbation does not shift the eigergditom the imaginary axis, preserving the marginal
stability. From expressions (12) and (13) we find that neamnibde(0, w1 ) in the plang(€2, Tm\)

2 2
Tmh —wy — AT g2 (PLZP2) 0 Ry (15)
4(4}1 4&)1

Fork # 0, equation (15) describes a hyperbola with the asymptotes

p1+ p2

Im\ =
m w1+ o,

Kk £ Q. (16)

The asymptotes cross each other above the @de ) of the non-deformed spectral mesh foK > 0,
exactly at the node fgy; = —p5, and below the node farK < 0. The branches of the hyperbola intersect
the axis(2 = 0 at the points

B = w + 2'0—;15, By = wi + 2%215. (17)

If the eigenvalueg, > have the same sign, the intersection points are above tlefopoK > 0 and below

it for K < 0, see Fig. 1(b). When one of the eigenvalygs is zero, which implies semi-definiteness of
the matrixKK, one of the branches of the hyperbola passes through the Mbdether one crosses the axis
(2 = 0 above the node, K > 0 or below it, if K < 0, Fig. 1(c). IfK is indefinite, one of the points; » is
located above the node and another one below it, Fig. 1(d).
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Figure 2: Origination of a latent source of subcritical utinstability in presence of full dissipation: Sub-
merged bubble of instability (a); coalescence of eigeraslia the complex plane at two exceptional points
(b); hyperbolic trajectories of imaginary parts (c).

2.2 Creating and activating the latent sources of instabili ty by dissipation

Assumingr = k = 0 in expressions (12) and (13) we find that

2 N 2
<Re)\ + W(S) + 02 = %52, ImA=w; for Rec>0, (18)

IRY
02 — (Im) — wy)? = %52, Re — _W5 for Rec<0. (19)

In the three-dimensional spa¢®, Im\, Re)\) the circle of complex eigenvalues (18) belongs to the plane
Im\ = wq, while the hyperbola (19) lies in the plafe\ = —d(u1 + p2)/4, as shown in Fig. 2(a,c).

According to (18) the radius of the bubble of instabilityand the distancé, of its center from the plane
Re) = 0 are defined by the eigenvalugs, of D

ry = |(p1 — p2)ol/4,  dp = |(p1 + p2)d| /4. (20)

The bubble of complex eigenvalues and hence the branchis afifacent hyperbola (19) are “submerged
under the surfac®eA = 0, when the conditiond, > r;, anddtrD > 0 are fulfilled, yielding the positive
(semi-)definite matri¥D of (pervasive) full damping. In the complex plane the eigémes move with the

variation of 2 along the lineReA = —d, until they meet at the junction of the bubble of instability8]
with the hyperbola (19)
ImA =w;, Red=—0(u1 + po2)/4, Q=20(u1 —p2)/4 (21)

and form the double eigenvalue with the Jordan chain of twwegsdized eigenvectors. With the further
increase i the eigenvalues split in the orthogonal direction, nevessing the imaginary axis, Fig. 2(b).

For the phenomenon of squeal it is important that the diisipanduced bubble of complex eigenvalues,
localized in the subcritical interva2| < €4, is a latent source of unstable modes with the frequencasscl
to the repeated eigenfrequerey A = w; of the non-rotating system. In the absence of circulatorgefe the
radius of the bubble of instability (18) is greater than tkett of its submersion under the surfabe\ = 0,
only if the eigenvalueg:; » of D have different signs. The eigenvalues of the emerged butavle positive
real parts in the rang@? < Q2 ., wheref)., = g\/ — det D, confirming that the negative friction-velocity

cr?

gradient as a source of indefinite damping can be a reasonborical flutter and squeal.
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Figure 3: n=2: domains of the subcritical flutter instapiljparametric resonance) in the absence of the non-
conservative positional forces & 0) for the idefinite matrixD with trD > 0, det D < 0, and (a)4 > 0,
(b)A=0,(c)A<0.

The sector-shaped domain of asymptotic stability of systEnwith indefinite damping is defined by the
constraintsstrD > 0 and? > Q2. Due to the singularity at the origin in the plafg ), an unstable
system with indefinite damping can be stabilized by suffityestrong gyroscopic forces. With the increase
in det D the stability domain gets wider and fdet D > 0 it is defined by the conditiodtrD > 0. At
det D = 0 the lineQ2 = 0 does not belong to the domain of asymptotic stability. Ciranthe matrixiD
from positive definite to indefinite triggers the state of hubble of instability from the lateriRe\ < 0) to
the active onéRe\ > 0), see Fig. 2(a).

2.3 Conical zones of the subcritical flutter induced by the in definite damping
Now we show that even if the eigenvalues of the rotationalmmetric gyroscopic system (1) are separated
in the subritical region by the symmetry-breaking variatiof the stiffness matrixK, the inclusion of
dissipationdD with the indefinite matriXD can cause flutter instability. Indeed, with= 0 in equation (12),
the conditionRe\ < 0 yields the linear approximation to the domain of asymptstability in the space of
the parameters, 2, andx

StrD >0, k%A + Q?(2witrD)? > — det D(wtrD)?52. (22)
For the damping matricdd® > 0 the conditions (22) are always fulfilled, whereas for thesfimdte damping
matrices withdet D < 0 the expressions follow from (22) for the flutter instabilitgmain, which has a
form of the half of a cone ford := det D(p;—p2)%+ (klz(d22—d11)—d12(k22—k11))2 > 0, the dihedral
angle forA = 0, and the domain adjacent to a half of a conedok 0, see Fig. 3(a)-(c). The orientation
of the instability domain is determined also by the Kreinnsiyre of the eigenvalues involved into the
corresponding crossing, which is substantially diffefierthe subcritical and in the supercritical regions. In
the planeg((2, ) for a fixedd > 0 the instability domain has, respectively, the form of aips#, a stripe, or
a region contained between the branches of a hyperbola. aftee tase shows that a widely known in the
engineering practice approach to the squeal suppressioedioging the rotational symmetry of the rotor is
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a) b) ¢)

Figure 4: Subcritical flutter caused by the dissipative ancltatory forces: Collapse and emersion of the
bubble of instability (a); excursions of eigenvalues to tlght-hand side of the complex plane whén
increases (b); crossing of the imaginary parts (c).

not efficient in the presence of indefinite damping, whiclgiodtes from the brake pads with the negative
friction-velocity gradient [12, 21]. Note that the thresthel = 0 separating the indefinite damping matrices
was found first in [26] for a general two-dimensional nonsmmative gyroscopc system with dissipation.

2.4 Activating the bubble of instability by non-conservati ve positional forces

In the absence of dissipation, the non-conservative positiforces destroy the marginal stability of gyro-
scopic systems [46]. Assuming= x = 0 in (12) and (13) we find that the eigenvalues of the branches
+(iwy + iQ2) of the spectral mesh get positive real parts due to a noneceative perturbation

Y ol tinT 2

n —

AF = iwy +iQ £

(23)

2w1 ’ 2&)1 .

In contrast to the effect of indefinite damping, the circoititforces destabilize one of the two modes at every
Q, Fig. 3(b). In order to localize the instability in the vigyof the nodes, a combination of circulatory and
dissipative forces is required.

With k = 0in (12) and (13) we describe the trajectories of the eigemsin the complex plane in presence
of dissipative and non-conservative perturbations

trD Qu

Circulatory forces destroy the merging of modes shown in Ejgcausing the eigenvalues to move along
the separated trajectories. According to (23) and (24) ipenealues withIm\| increasing with an in-
crease irnQ2| move closer to the imaginary axis than the others, as showigid(b). The non-conservative
perturbation separates the bubble of instability and thacedt hyperbolic eigenvalue branches into two
non-intersecting curves in the spaée Im\, Re)A). The remnants of the original bubble of instability yield
subcritical flutter at a frequenay;, < w < w, with the gyroscopic parameter in the rarige < Q2 , where

cr?

Q. — 5trD\/ v2 — §2w?det D ot = L\/_ v2 — §2w? det D 25)

4\ - 82u2(rD/2)27 v2 — 52w (trD/2)2

Hence, in the presence of the non-conservative positiamaé$ the excursions of eigenvalues to the right-
hand side of the complex plane shown in Fig. 4(b) are poss#hkn if the dissipation is fulldet D > 0).
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Figure 5: Domains of asymptotic stability in the spaég, ) for different types of dampingdet D < 0
(@),det D = 0 (b),det D > 0 (c).

Extractingv in the first of equations (25) yields approximation to thé#ity boundary in the space of the

parameters, v, and()
0% det D + 402
= +owitrD : 26
v o \/52(trD)2 + 1602 (26)

If detD > 0 and2 is fixed, the formula (26) describes two independent curmdahe planed, v), inter-
secting with each other at the origin along the straightsiie = +w;trDJ. Fordet D < 0 equation (26)
describes in the plan@, ) two branches of a closed loop, self-intersecting at theromgth the tangents
2v = twitrDJ. In the space of the three parameters the surface (26) iseaveitimthe “8"—shaped loop in

a cross-section, see Fig. 5(a). Asymptotic stability igdi@she two of four pockets of the cone, selected by
the inequalitystrD > 0. The singularity at the origin is the degeneration of a maeegal configuration
found in [26].

The domain of asymptotic stability bifurcates with the opaof sign ofdet D. In case of indefinite damping
an instability gap exists due to the singularity at the oridtig. 5(a). Fordet D = 0 the gap vanishes in
the directionv = 0, Fig. 5(b). Despite the full dissipation witflet D > 0 unfolds the singularity, the
memory about the instability gap is preserved in the twodadfl the stability boundary with the locally
strong curvature, Fig. 5(c). When both > 0 andue > 0, the folds are more pronounced, if one of the
eigenvalues is close to zero. If the eigenvalues have different signs, subcritical flutter is possible foy an
combination ofy andv including the case when the non-conservative positiormaefare abseritr = 0).

Independently on the structure of the maiidxthe primary role of dissipation is the creation of the bt
instability. It is submerged below the surfaBe\ = 0 in the spacé(2, Im\, Re)) in case of full dissipation
and partially lies in the domaiReA > 0 when damping is indefinite. Non-conservative positionatés
destroy the bubble into two branches and shift one of themeadgion of positive real parts even in case of
full dissipation. Since the branch remembers the existehtt®e bubble, the subcritical flutter is developing
near the nodes of the spectral mesh.

3 Example: A rotating circular string

The perturbative approach of the previous section, moddledg the lines of the work [3], is applicable
to thenon-discretizedboundary eigenvalue problems, associated with the rgtatiings, rings, discs, and
shells in frictional contact for a wide class of availableubdary conditions. We notice, however, that the
correct formulation of the boundary conditions for suchigbems is a delicate question, which is not resolved
yet in full in the existing literature, see, e.g., [36].
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Figure 6: A rotating circular string and its “keyboard” ctihged by the nodes (marked by white and black)
of the spectral mesh (only 30 modes are shown).

The eigenvalue behavior predicted by the analysis of themémwo-dimensional system of the previous
section was already observed in the works [5, 11, 40], whdietua rotating disc and a rotating circular
string in a point-wise contact with the stationary load egs.

For simplicity, following [5] we consider a circular striraf displacemeniV (p, 7), radiusr, and mass per
unit lengthp that rotates with the speedand passes at = 0 through a massless eyelet generating a constant
frictional follower force F' on the string, as shown in Fig. 6. The circumferential temgioin the string is
assumed to be constant; the stiffness of the spring supgdte eyelet ig and the damping coefficient of
the viscous damper iB; the velocity of the string in the direction has constant value:. This a somewhat
artificial system contains, however, the fundamental msysf interest, i.e. the interaction of rotating flexible
medium with a stationary constraint in which the inertiatragcopic, and centripetal acceleration effects,
together with the stiffness effects of the medium, are inasyic equilibrium with the forces generated by
the constraint. With the non-dimensional variables andmpaters

T [P W P Kr F D
A v 7 B 5 K= 5 N (27)

the substitution ofv(p, t) = u(p) exp(At) into the governing equation and boundary conditions yiéiés
boundary eigenvalue problem [5]

Lu = X + 20X\ — (1 — Q%) =0, (28)
A+ k M
uw(0) —u(2r) =0, «'(0)—d/(27m) = - Q2u(0) + Y u'(0), (29)

where’ = 9,. The non-self-adjoint boundary eigenvalue problem (28) @9) depends on the speed of
rotation (€2), and dampindd), stiffness(k), and friction(u) coefficients of the constraint.

Since the unconstrained rotating string is a gyroscopitesaysthe eigenfunctions of the adjoint eigenvalue
problems, corresponding to a purely imaginary eigenvalueoincide. Withu = C; exp (pA/(1 —Q)) +
Cyexp (—pA/(1 4+ Q)) assumed as a solution of (28) in (29), we find the charadteesfuation, whose
roots yield the eigenvalues of the eigenvalue problem (28),

M =in(1+Q), X\, =in(l-Q), ncZ, (30)

n n

with the eigenfunctions;;> = cos(ny) F isin(ny). Two eigenvalue branches, = in(1 + Q) and\?, =
im(1 + 0Q), wheres, § = +1, intersect each other at the no@e?,,, A9, ) with
n—m 5 inm(d—e¢)

Q0 = XS, = ————, (31)

md — ne’ mn md — ne
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where the double eigenvalué’  has two linearly independent eigenfunctions
us, = cos(ny) — eisin(ng), ud, = cos(mep) — disin(mey). (32)

Intersections (31), corresponding to the forward and bac#wraveling waves, occur in the subcritical region
(12| < 1) and are marked in Fig. 6 by white dots. The black dots inditaentersections of the forward
and reflected waves taking place in the supercritical refian> 1).

Using the perturbation theory [3, 8, 43] and taking into astcexpressions (31) and (32) we find an ex-
pression for the eigenvalues originated after the sgditththe double eigenvalues due to interaction of the
rotating string with the external loading system

e+

en +om n—i—m(d)\ﬂ; +k)+8—ﬂi\/za (33)
T

A=20 i AQ 4+

2 TTNnm

whereAQ = Q — Q9

nm?

and

_5 _
c= (imeAQJrim DdNS + k) +

e=0 \?  (dX), +k —ienp)(dASS, + k — idmp)
SmTmn H '

&

1672nm

Due to action of gyroscopic forces and an external sprlng:)tfkaalgenvaluegx split in the subcritical
region|?] < 1(¢ < 0,6 >0andm >n > 0) as

S n+m._ k2 m—-n, m+n 2
)\:)\nm—i—z PAQ i T My + k — AQ) (34)
8mrnm 16m2nm 8rmn 2

while in the supercritical regioff2| > 1 (¢ < 0, > 0 andm > 0, n < 0)

_ k2 _ 2
Ao gl ag mki\/ —<‘”‘2mm—m+‘”‘k). (35)

2 8m|n|m 1672|n|m 8mm|n|

Therefore, for|2| < 1 the spectral mesh collapses into separated curves deitmgtavoided crossings;
for |©2] > 1 the eigenvalue branches overlap forming the bubbles o&lilgy with eigenvalues having
positive real parts, see Fig. (7)(a). From (35) a linear axipration follows to the boundary of the domains
of supercritical flutter instability in the plan&, k) (gray resonance tongues in Fig. (7)(b))

_dxlolm(nl —m) (o ol4m
- i () o

In the subcritical region we focus on the nodes of the spentesh at(2 = 0 as the most relevant to the
problems of acoustics of friction. Since in this case= n ande = —4, we find that the double eigenvalue
in splits due to action of gyroscopic forces and an externahgms

)
167202

A:in+i4i:|:i\/n292+

™n

(37)

demonstrating the avoided crossing, see Fig. (7)(a). Tieetadf damping and gyroscopic forces yields

d\?* 4.,
<Re/\ + 47r> +n 1672 mA = n, (38)
n20? — (Im\ — n)? = & g4 (39)
1672’ 4’

The lower branch of the hyperbola (37) passes through thelnoed = », while the upper one intersects the
axisQ =0 atlmA =n + % in the plane(€2, Im)\), see Fig. 7(a). In the two-dimensional case the reason
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Figure 7: (a) Deformation of the spectral mesh of the rotgsitming interacting with the external spring with
k = 2, (b) approximation (36) to the corresponding tongues ofstingercritical flutter, (c,d) effect of the
external damper witld = 0.3 near the nod¢0, 2) of the spectral mesh.

for such a degenerate behavior is zero eigenvalue in thexigtof external potential fores. The external
damper creates a latent source of subcritical flutter ifigtabxactly as it happens in two dimensions when
D has one zero eigenvalue. Indeed, the bubble of instab8&Y together with the adjacent hyperbola (39)
is under the plan®eX = 0, touching it at the origin, as shown in Fig. 7(c),(d).

Deformation patterns of the spectral mesh obtained by thenbation theory and shown in Fig. 7, qualita-
tively agree with the results of numerical calculationstfa string [5] and for the disc [40]. They show that
the perturbations from point-wiseexternal source of potential, damping, and friction foraes degener-
ate. Even without the friction term in (29) the degeneracthefmodel persists, as is clearly seen from the
comparison of Fig. 7(a),(d) with Fig. 1(c) and Fig. 2(a). #émeffect was detected for the rotating disc in a
point-wise frictional contact in [11, 40].

Below we show that the degeneracy of the perturbation cam$itye@esolved. For this purpose we consider
a discretized equations of the string, which follow from {lijh w, = s. We find the structure of the
matricesD andK from the desired behaviour of the eigenvalues originatest &fie splitting of the double
eigenvalues at the nodes of the spectral mesh.

Assuming for simplicity that, = 2 and, hencey; = 1, wy = 2, we find that the eigenvalue branches of the
spectral mesh cross in the supercritical regidn> 1 of the (€2, Im\)-plane at the four point&t3, £4). In
the subcritical region?| < 1 there exist eight crossindgs-1/3,+4/3), (0, £1), and(0, £2), see Fig. 8(a).
Splitting of the double eigenvalug, = iwy with the eigenvaluesi; andu, at Q2 = g is given by the
formuladet(F + (A — X\g)G) = 0, where the entries of the matric€sandF are [3]

Gz‘j = inoﬁiTu]‘ + QQoﬁZTGu]‘,
F;; = (2iw0ﬁzTGuj + 2Q0ﬁZTG'2uj)(Q — Qo) + inﬁZTDuj(s + leTKu]‘Ii + ﬁZTNujI/. (40)

For example, at the supercritical intersection of the bnas¢(1 + Q) and —2i(1 — ) the double eigen-
value )\ = 4i, atQy = 3 has the eigenvectors; = (—i/2,1/2,0,0)7, wuy = v/2(0,0,—i/4,1/4)T.
Calculating the matrice& and K and then the first-order approximations to the eigenvalwestind that
the perturbation of the stiffness matrK yields the supercritical flutter when

. 8(02 - 3)
trK + ki1 + koo £ 1/8(k14 — ko3)? + 8(k13 + koa)?’

(41)

wherek;; are the entries of the matri. The subcritical intersection of the mod&g1 — ) andi(1 + )
at()y = 1/3 originates the double eigenvalug = 4i/3 with the eigenvectors; = (—i/2,1/2,0,0)T and
uy = v/2(0,0,i/4,1/4)T . Itis easy to verify that in this case the instability domairthe (2, x-plane does
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Figure 8: A2n = 4-dimensional discretized model of the rotating circulaingt (a) spectral mesh, (b) the
effect of indefinite damping witld = 0.1 and stiffness variation witlk = 0.003 on (b) imaginary parts of
the eigenvalues (c),(d) on the real parts.

not exist wheny = 0 andv = 0. In the presence of damping subcritical flutter is possiseich follows
from the formula for the eigenvalue splitting for the fix@d= Qy = 1/3

4 45Rea—3ikIma 1
:%— Rﬂu?“mai@meRw—3mmwv+aMRw—3mmwv+&wmw—3mmmﬁ,@a

where

A

Rea = 2d22 + d44 + d33 + 2(111, Ima = 2]€11 + 2]{22 + ]{544 + k33,
Reb = 2dgo — dys + 2d11 — dz3, Imb = 2k11 — k33 — kag + 2koo,
Rec = dig+dog, Imc=kis+ ko3, Red=dy —diz, Imd=kiz— k. (43)

According to (42) in the, /-plane the instability domain is inside of the sector

0>+

3k \/ _ (ImbReb + ImcRec + ImdRed)? — (Imb? + Imc? + Imd?)Rea? (44)

4Rea Reb? + Rec? + Red? — Rea? ’

which is inclined in such a manner that in the pldbg: the flutter domain has the form of an ellipse. In
the (), 4, k-space the instability domain has the conical shape. Theespdentation of the cones in the sub-
and subcritical domains is substantially different, whesiplains the invisibility of the flutter domains in the
subcritical range and their simultaneous existence intipersritical range fob = 0. Using the condition
(44) we easly construct the perturbations, yielding flutiesir all the nodes in the subcritical region

-2 0 0 1 11 3 4
0 2 00 1 5 3 2

b= 0 03 0|’ K= 33 3 7 | (45)
1 0 0 4 4 2 77

as is seen in Fig. 8(b)-(d). The matricBsand K are indefinite with the eigenvalués 3, 4.162277660,
—2.162277660 and4.011016866, 15.39075619, —0.9102103430, —2.491562713, respectively.

Conclusion

Supporting an attractive thesis by Chan et al. [39], “Fhittetabilities in brake systems occur primarily as a
result of symmetry [breaking]; the frictional mechanismigvhhas been the subject of much research over the
past forty years is of secondary importance,” the sensitamalysis of the present paper demonstrates how
the nodes of the spectral mesh, situated in the subcritcaje, may serve as the “keyboard” of a rotating
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elastic body of revolution. The frictional contact is a smuof non-Hamiltonian and symmetry-breaking
perturbations. In the vicinity of the “keys” of the “keybairdamping creates eigenvalue bubbles, which are
dangerous by the ability to get positive real parts in presasf non-conservative positional forces or even
without them, if the damping is indefinite. The activated liels of instability cause subcritical flutter of a
rotating structure, forcing it to vibrate at a frequencyseldo the double frequency of the node and at the
angular velocity close to that of the node. An advantage efsemsitivity analysis of the spectral mesh to
arbitrary perturbations is in selecting the generic bedranf eigenvalues and thus the generic perturbations
yielding flutter or stability. For example, the observed elegracy in the movement of eigenvalues of the
rotating string and disc evidences that a point-wise caoméacls to the semi-definite perturbation operators,
which suppress generic instability mechanism behind tlhealqg The effect seems to be similar to the so-
called Herrmann-Smith paradox of a beam resting on a unifdfinkler elastic foundation and loaded by
a follower force [47]. Therefore, more correct descriptaifrthe frictional contact would take into account
the finite dimensions of the pads as well as the dependenéeiofcharacteristics on material coordinates.
The size of the friction pads and their placement with resjethe rotating body should select the particular
node of the spectral mesh that produces an unstable corigénvelue [48, 49]. The selection rules as well
as the optimal distribution of the stiffness, damping, aietibn characteristics of the pads can be effectively
investigated with the approach developed in the preserrpap
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