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Abstract
Linearized models of elastic bodies of revolution, spinning about their symmetrical axes, possess the eigen-
frequency plots with respect to the rotational speed, whichform a mesh with double semi-simple eigenfre-
quencies at the nodes. At contact with friction pads, the rotating continua, such as the singing wine glass
or the squealing disc/drum brake, start to vibrate because of the subcritical flutter instability. In the present
paper a sensitivity analysis of the spectral mesh is developed for the explicit predicting the onset of instabil-
ity. The determining role of the Krein signature of the eigenvalues involved in the crossings as well as the
key role of the indefinite damping and non-conservative positional forces is clarified in the development and
localization of the subcritical flutter. It is established that even when the rotational symmetry is broken by the
variation of the structure of the stiffness matrix and therefore the eigenvalues of the undamped gyroscopic
system avoid crossings, its perturbation by the dissipative forces with the indefinite matrix can cause flutter
instability in the subcritical region.

1 Introduction

Consider an autonomous linear gyroscopic system describing small oscillations in the discretized models of
rotating elastic bodies of revolution considered in a stationary frame [1, 2]

ẍ + 2ΩGẋ + (P + Ω2G2)x = 0, x = R2n, (1)

whereΩ is the speed of rotation,P=diag(ω2
1 , ω
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1, ω

2
2 , ω

2
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n, ω2

n) = PT is the matrix of potential forces,
andG=diag(J, 2J, . . . , nJ) = −GT is the matrix of gyroscopic forces with

J =
(

0 −1
1 0

)
. (2)

Due to rotational symmetry of the rotor and periodic boundary conditions the eigenvaluesω2
1 < ω2

2 < · · · <
ω2

n−1 < ω2
n of the matrixP are double semi-simple, that is each eigenvalueω2

s has two linearly independent
eigenvectors [3, 4]. The distribution of the doubletsω2

s as a function ofs is usually different for various
bodies of revolution. For example,ωs = s corresponds to the spectrum of a circular string [5]. Nevertheless,
there exist isospectral bodies, because ”one cannot hear the shape of a drum” [6].

Separating time by the substitutionx = u exp(λt), we arrive at the eigenvalue problem for the operatorL0

L0(Ω)u := (Iλ2 + 2ΩGλ + P + Ω2G2)u = 0. (3)

As a consequence of the block-diagonal structure of the matricesG andP the eigenvalues ofL0 are

λ±s = iωs ± isΩ, λ±s = −iωs ∓ isΩ, (4)
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where bar over a symbol denotes complex conjugate. Rotationcauses the doublet modes±iωs to split. The
newborn pair of simple eigenvaluesλ±s corresponds to the forward and backward traveling waves, which
propagate along the circumferential direction [7]. Viewedfrom the stationary frame, the frequency of the
forward traveling wave appears to increase and that of the backward traveling wave appears to decrease,
as the spin increases. Double eigenvalues thus originate again at non-zero angular velocities, forming the
nodes of thespectral mesh[8, 9] of the crossed frequency curves in the plane ‘frequency’ versus ‘angular
velocity’. The spectral meshes are characteristic for suchrotating symmetric continua as circular strings [5],
discs [10, 11, 12], rings and cylindrical and hemisphericalshells [13], vortex rings [14], and a spherically
symmetricα2-dynamo of magnetohydrodynamics [8].

At the angular velocityΩcr
s = ωs/s the frequency of thesth backward traveling wave vanishes to zero(λ±s =

λ±s = 0), so that the wave remains stationary in the non-rotating frame. The lowest one of such velocities,
Ωcr, is calledcritical [12]. When the speed of rotation exceeds the critical speed,the backward wave travels
slower than the disc rotation speed and appears to be traveling forward (reflected wave), corresponding to
the eigenvaluesλ±s . The effective energy of the reflected wave is negative and that of the forward and
backward traveling waves is positive [15]. Therefore, in the subcritical speed region|Ω| < Ωcr all the
crossings of the frequency curves correspond to the forwardand backward modes of the same signature,
while in the supercritical speed region|Ω| > Ωcr there exist crossings that are formed by the reflected
and forward/backward modes of opposite signature. According to Krein’s theory [15], under Hamiltonian
perturbations like the mass and stiffness constraints [10], the crossings in the subcritical region veer away
into avoided crossings(stability), while in the supercritical region the crossings of the modes of opposite
signature turn into the rings of complex eigenvalues—bubbles of instability[15]—leading to flutter known
also as the ‘mass and stiffness instabilities’ [10].

A supercritical flutteris important for the high speed applications like circular saws and computer storage
devices, while in the acoustics of friction of rotating elastic bodies of revolution asubcritical flutteris either
desirable as a source of instability at low speeds as in the case of musical instruments like the singing wine
glass and a glass harmonica [16, 17] or undesirable as in the case of the squelaing disc- and drum brakes
[12, 18, 19, 20, 21]. Being prohibited by Krein’s theory for the Hamiltonian systems, subcritical flutter can
occur, however, due to non-Hamiltonian, i.e. dissipative and non-conservative, perturbations [22].

The author of one of the first theories of squeal [23], Spurr experimentally observed that a rotating wine glass
sang when the dynamic friction coefficient was a decreasing function of the velocity [16]. Linearizing the
system with the negative friction-velocity gradient produces an eigenvalue problem with anindefinitematrix
of damping forces. Effectively negatively damped vibration modes may lead to complex eigenvalues with
positive real parts and cause flutter instability [24, 25, 26, 27]. The growth in amplitude will be limited in
practice by some non-linearity. Since the engineering design is often more concerned with if a brake may
squeal and less with how loud the brake may squeal, a complex eigenvalue analysis offers for it a pragmatic
approach used currently by most of production work in industry [20].

The fall in the dynamic friction coefficient with increasingvelocity is among the main empirical reasons for
disc brake squeal, categorized in [19]. One more isnon-conservativepositional forces, which first appeared
in the linear models by North [28]. The binary flutter in such models happens through the coalescence of
two modes according to the reversible Hopf bifurcation scenario [27, 29, 30]. Inclusion of damping leads
to the imperfect merging of modes [31] and to the flutter through the dissipative Hopf bifurcation, which is
connected to the reversible one by means of the Whitney umbrella singularity [29, 32, 33]. The destabilizing
role of non-potential positional forces in dynamical systems, including the tippe top inversion and the rising
egg phenomena of rotordynamics, was emphasized recently in[34], see also [26, 35, 36].

Historically, in the study of brake squeal, the symmetry of the disc as well as the effects of its rotation
were frequently ignored. The latter in the assumption that the low rotor speed range which squeal tends to
occur does not warrant this complication [20]. However, as in the case of a singing wine glass, experiments
revealed the proximity of the squealing frequency and mode shape of brake’s rotor for low rotational speeds to
a natural frequency and corresponding mode shape of a stationary rotor [12, 19, 20, 37, 38]. Since an axially
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symmetric rotor possesses pairs of identical frequencies,Chan et al. [39] proposed another mechanism of
squeal in the classification of Kinkaid et al. [19] based on thesplitting of the frequency of the doublet modes
in the symmetric disc when a friction force was applied. The splitting could lead to flutter equated to brake
squeal, which in general is a sound with one dominant frequency [12, 18, 19, 20, 21].

In 1990s subcritical flutter was detected by numerical approaches in the new models of disc brakes that
incorporated gyroscopic and centripetal effects and accommodated more than one squeal mechanism through
the splitting the doublet modes of a disc by dissipative and non-conservative perturbations coming from the
negative friction-velocity gradient and frictional follower load. The models include both the case when
the point-wise or distributed friction pads are rotated around a stationary disc, affecting a point or a sector
of it, and when the disc rotates past the stationary frictionpads, see [19, 20, 21, 39, 40], and references
therein. Linearization and discretization of the latter class of the models frequently results in the equation
(1) perturbed by the matricesD = DT , K = KT andN = −NT corresponding to dissipative, potential
and non-conservative positional forces

ẍ + (2ΩG + δD)ẋ + (P + Ω2G2 + κK + νN)x = 0, (5)

where the parametersδ, κ, andν control the magnitudes of the perturbations. The matricesD, K, andN
can be assumed to be functions ofΩ. The transformationx = Az := exp(−ΩGt)z yields an equivalent to
(5) potential system with the periodic perturbation, see [41, 42]

z̈ + δD̃(t)ż + (P− δΩD̃(t)G̃(t) + κK̃(t) + νÑ(t))z = 0, (6)

with D̃(t) = A−1DA, G̃(t) = A−1GA = G, K̃(t) = A−1KA, Ñ(t) = A−1NA, because in the rotating
frame the load appears to be moving periodically in the circumferencial direction. For2n = 2 degrees of
freedom the matrix̃N(t) = N and the periodic stiffness and damping matrices are

2K̃(t) = diag(trK, trK) + (K + JKJ) cos(2Ωt) + (JK−KJ) sin(2Ωt),
2D̃(t) = diag(trD, trD) + (D + JDJ) cos(2Ωt) + (JD−DJ) sin(2Ωt). (7)

In the absence of dissipative(δ = 0) and non-conservative positional(ν = 0) terms, (6) is a Mathieu-
like equation with the periodic in time potential possessing parametric resonances in the supercritcal range
|Ω| > Ωcr. Inclusion of parametrically excited damping and non-conservative terms makes the equation (6)
a less traditional parametric resonance problem due to the possibility of instability in both the subcritical and
supercritical regions [21, 39]. Nevertheless, the equivalence of the two dual descriptions enables us to reduce
the investigation of the parametric resonance in the non-autonomous system (6) to a considerably simpler
study of the stability of the autonomous system (5), cf. [42]. Subcritical parametric resonance domains of
equation (6) correspond to the regions of subcritical flutter of the system (5).

In the present paper we propose a sensitivity analysis of thesystem (5) based on the perturbation theory of
multiple eigenvalues of non-self-adjoint operators [3, 4,8, 43], which is an efficient tool for investigation of
the subcritical flutter both in the finite-dimensional and distributed models. Instead of deriving the partic-
ular operators of dissipative and circulatory forces by accurate modeling of the frictional contact and then
studying their effect on the spectrum and stability, we solve an inverse problem. Assuminga priori only the
existence of distinct squeal frequencies close to the double eigenfrequencies of the uloaded body we find
the structure of the dissipative and non-conservative operators whose action causes flutter in the subcriti-
cal region near the nodes of the spectral mesh. We describe analytically the movement of eigenvalues and
the deformation of the spectral mesh. Using this data, we approximate the stability domain in the space of
system’s parameters.

Confirming that the perturbation by conservative forces canyield flutter only in the supercritical region, we
come to new qualitative conclusions. Forδ 6= 0 there exist indefinite damping matrices of such a structure
that always causes the subcritical flutter even when the eigenvalue branches of the unperturbed gyroscopic
system are well-separated due to changes in the stiffness matrix that break the rotational symmetry of the
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Figure 1: 2n = 2: (a) spectral mesh and its conservative deformation (κ > 0) in the case when (b)K is
positive-definite, (c)K is positive semi-definite, and (d)K is indefinite.

rotor. In the presence of indefinite damping the regions of flutter in the three-dimensional space of the pa-
rametersΩ, δ, andκ turn out to have a conical shape. The inclination of the conesis different in the sub- and
supercritical ranges ofΩ and it is substantially determined by the Krein signature ofthe eigenvalues involved
in the crossings of eigenvalues corresponding to the apexesof the cones. Due to the different inclination the
zones of the supercritical flutter are visible in the planeδ = 0 whereas the intersection of this plane with the
zones of subcritical flutter can be an empty set. A discoveredsingularity of the stability boundary allows for
the combinations of dissipative and non-conservative positional forces yielding the subcritical flutter insta-
bility in the vicinity of the nodes of the spectral mesh even in the case, when the damping matrix is positive
definite with some of its eigenvalues close to zero. The vanishing and negative eigenvalues of the damping
matrix encourage the development of the subcritical flutterwhile zero eigenvalues of the matrix of non-
conservative positional forces suppress it. The proposed approach provides guidance to a classification of
dissipative and non-conservative perturbations by their ability to cause the subcritical flutter, which is helpful
in checking and correcting particular models of disc brakesand other rotating elastic bodies of revolution
having frictional contact.

2 Dissipation-induced subcritical flutter in the case of 2n = 2 d.o.f.

Owing to its relative simplicity the case of two degrees of freedom(n = 1) allows for the detailed stability
analysis. Although the complete investigation of the spectral mesh and its deformation under both Hamilto-
nian and non-Hamiltonian perturbations in system (5) with arbitrary number of degrees of freedom would be
very desirable for applications, a restriction to two dimensions is justified for demonstrating the basic ideas
of our theory. On the other hand, two-dimensional models arewidely employed in acoustics of friction [30],
while our perturbative approach does not depend on the number of degrees of freedom.

Forn = 1 the spectrum of the unperturbed operatorL0(Ω) consists of four branches. In the subcritical region
|Ω| < Ωcr = ω1 they cross in the plane(Ω, Imλ) at the points(0,±ω1), see Fig. 1(a). Assuming without
loss in generalityN = J, we consider a general perturbation of the gyroscopic system L0(Ω) + ∆L(Ω).
The size of the perturbation∆L(Ω) = δλD+ κK+ νN ∼ ε is small, whereε = ‖∆L(0)‖ is the Frobenius
norm of the perturbation atΩ = 0. For smallΩ andε perturbation of the double semi-simple eigenvalue
λ = iω1 with two orthogonal eigenvectorsu1 andu2

u1 =
1√
2ω1

(
0
1

)
, u2 =

1√
2ω1

(
1
0

)
. (8)

is described by the asymptotic formula [4]

λ±p = iω1+iΩ
f11 + f22

2
+i

ǫ11 + ǫ22

2
±i

√
(Ω(f11 − f22) + ǫ11 − ǫ22)2

4
+ (Ωf12 + ǫ12)(Ωf21 + ǫ21), (9)
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where the quantitiesfjk are

fjk = uT
k

∂L0(Ω)
∂Ω

uj

∣∣∣∣
Ω=0,λ=iω1

= 2iω1uT
k Guj . (10)

Due to the propertyG = −GT with the vectors (8) the formula (10) yieldsf11 = f22 = 0 andf12 =
−f21 = i. The coefficientsǫjk are small complex numbers of orderε

ǫjk = uT
k ∆L(0)uj = iω1δuT

k Duj + κuT
k Kuj + νuT

k Nuj. (11)

With the vectors (8) we obtain

Reλ = −µ1 + µ2

4
δ ±

√
|c|+ Rec

2
, Imλ = ω1 +

ρ1 + ρ2

4ω1
κ±

√
|c| − Rec

2
, (12)

Rec =
(

µ1−µ2

4

)2

δ2 −
(

ρ1−ρ2

4ω1

)2

κ2 − Ω2 +
ν2

4ω2
1

, Imc =
Ων

ω1
− δκ

2trKD− trKtrD
8ω1

, (13)

where the eigenvaluesµ1,2 andρ1,2 of the matricesD andK satisfy the equations

µ2 − µtrD + detD = 0, ρ2 − ρtrK + detK = 0. (14)

Formulas (12) take into account the forces of all types and explicitly describe the perturbed spectrum by
means of the eigenelements and the derivatives of the operator with respect to parameters, calculated solely
at the nodes of the spectral mesh. This is more efficient for describing the veering and merging of eigenvalue
branches [44], than the sensitivity analysis of simple eigenvalues of the works [5], [45].

2.1 Conservative deformation of the spectral mesh

Since the eigenvalues at the crossings in the subcritical range have the same Krein signature, they veer away
under potential perturbationκK, destroying the rotational symmetry of the body, as shown inFig. 1(b)-(c).
The conservative perturbation does not shift the eigenvalues from the imaginary axis, preserving the marginal
stability. From expressions (12) and (13) we find that near the node(0, ω1) in the plane(Ω, Imλ)(

Imλ− ω1 − ρ1 + ρ2

4ω1
κ

)2

− Ω2 =
(

ρ1 − ρ2

4ω1

)2

κ2, Reλ = 0. (15)

Forκ 6= 0, equation (15) describes a hyperbola with the asymptotes

Imλ = ω1 +
ρ1 + ρ2

4ω1
κ± Ω. (16)

The asymptotes cross each other above the node(0, ω1) of the non-deformed spectral mesh fortrK > 0,
exactly at the node forρ1 = −ρ2, and below the node fortrK < 0. The branches of the hyperbola intersect
the axisΩ = 0 at the points

β1 = ω1 +
ρ1

2ω1
κ, β2 = ω1 +

ρ2

2ω1
κ. (17)

If the eigenvaluesρ1,2 have the same sign, the intersection points are above the node for K > 0 and below
it for K < 0, see Fig. 1(b). When one of the eigenvaluesρ1,2 is zero, which implies semi-definiteness of
the matrixK, one of the branches of the hyperbola passes through the node. The other one crosses the axis
Ω = 0 above the node, ifK ≥ 0 or below it, if K ≤ 0, Fig. 1(c). IfK is indefinite, one of the pointsβ1,2 is
located above the node and another one below it, Fig. 1(d).
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Figure 2: Origination of a latent source of subcritical flutter instability in presence of full dissipation: Sub-
merged bubble of instability (a); coalescence of eigenvalues in the complex plane at two exceptional points
(b); hyperbolic trajectories of imaginary parts (c).

2.2 Creating and activating the latent sources of instabili ty by dissipation

Assumingν = κ = 0 in expressions (12) and (13) we find that(
Reλ +

µ1 + µ2

4
δ

)2

+ Ω2 =
(µ1 − µ2)2

16
δ2, Imλ = ω1 for Rec > 0, (18)

Ω2 − (Imλ− ω1)
2 =

(µ1 − µ2)2

16
δ2, Reλ = −µ1 + µ2

4
δ for Rec < 0. (19)

In the three-dimensional space(Ω, Imλ,Reλ) the circle of complex eigenvalues (18) belongs to the plane
Imλ = ω1, while the hyperbola (19) lies in the planeReλ = −δ(µ1 + µ2)/4, as shown in Fig. 2(a,c).

According to (18) the radius of the bubble of instabilityrb and the distancedb of its center from the plane
Reλ = 0 are defined by the eigenvaluesµ1,2 of D

rb = |(µ1 − µ2)δ|/4, db = |(µ1 + µ2)δ|/4. (20)

The bubble of complex eigenvalues and hence the branches of the adjacent hyperbola (19) are “submerged”
under the surfaceReλ = 0, when the conditionsdb ≥ rb andδtrD > 0 are fulfilled, yielding the positive
(semi-)definite matrixδD of (pervasive) full damping. In the complex plane the eigenvalues move with the
variation ofΩ along the linesReλ = −db until they meet at the junction of the bubble of instability (18)
with the hyperbola (19)

Imλ = ω1, Reλ = −δ(µ1 + µ2)/4, Ω = ±δ(µ1 − µ2)/4 (21)

and form the double eigenvalue with the Jordan chain of two generalized eigenvectors. With the further
increase inΩ the eigenvalues split in the orthogonal direction, never crossing the imaginary axis, Fig. 2(b).

For the phenomenon of squeal it is important that the dissipation-induced bubble of complex eigenvalues,
localized in the subcritical interval|Ω| < Ωd, is a latent source of unstable modes with the frequencies close
to the repeated eigenfrequencyImλ = ω1 of the non-rotating system. In the absence of circulatory forces the
radius of the bubble of instability (18) is greater than the depth of its submersion under the surfaceReλ = 0,
only if the eigenvaluesµ1,2 of D have different signs. The eigenvalues of the emerged bubblehave positive
real parts in the rangeΩ2 < Ω2

cr, whereΩcr = δ
2

√− detD, confirming that the negative friction-velocity
gradient as a source of indefinite damping can be a reason for subcritical flutter and squeal.
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Figure 3: n=2: domains of the subcritical flutter instability (parametric resonance) in the absence of the non-
conservative positional forces (ν = 0) for the idefinite matrixD with trD > 0, detD < 0, and (a)A > 0,
(b) A = 0, (c) A < 0.

The sector-shaped domain of asymptotic stability of system(1) with indefinite damping is defined by the
constraintsδtrD > 0 andΩ2 > Ω2

cr. Due to the singularity at the origin in the plane(δ,Ω), an unstable
system with indefinite damping can be stabilized by sufficiently strong gyroscopic forces. With the increase
in detD the stability domain gets wider and fordetD > 0 it is defined by the conditionδtrD > 0. At
detD = 0 the lineΩ = 0 does not belong to the domain of asymptotic stability. Changing the matrixδD
from positive definite to indefinite triggers the state of thebubble of instability from the latent(Reλ < 0) to
the active one(Reλ > 0), see Fig. 2(a).

2.3 Conical zones of the subcritical flutter induced by the in definite damping

Now we show that even if the eigenvalues of the rotationally symmetric gyroscopic system (1) are separated
in the subritical region by the symmetry-breaking variation of the stiffness matrixκK, the inclusion of
dissipationδD with the indefinite matrixD can cause flutter instability. Indeed, withν = 0 in equation (12),
the conditionReλ < 0 yields the linear approximation to the domain of asymptoticstability in the space of
the parametersδ, Ω, andκ

δtrD > 0, κ2A + Ω2(2ω1trD)2 > − detD(ω1trD)2δ2. (22)

For the damping matricesD > 0 the conditions (22) are always fulfilled, whereas for the indefinite damping
matrices withdetD < 0 the expressions follow from (22) for the flutter instabilitydomain, which has a
form of the half of a cone forA := detD(ρ1−ρ2)2+(k12(d22−d11)−d12(k22−k11))

2 > 0, the dihedral
angle forA = 0, and the domain adjacent to a half of a cone forA < 0, see Fig. 3(a)-(c). The orientation
of the instability domain is determined also by the Krein signature of the eigenvalues involved into the
corresponding crossing, which is substantially differentin the subcritical and in the supercritical regions. In
the plane(Ω, κ) for a fixedδ > 0 the instability domain has, respectively, the form of an ellipse, a stripe, or
a region contained between the branches of a hyperbola. The latter case shows that a widely known in the
engineering practice approach to the squeal suppression byreducing the rotational symmetry of the rotor is
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Figure 4: Subcritical flutter caused by the dissipative and circulatory forces: Collapse and emersion of the
bubble of instability (a); excursions of eigenvalues to theright-hand side of the complex plane whenΩ
increases (b); crossing of the imaginary parts (c).

not efficient in the presence of indefinite damping, which originates from the brake pads with the negative
friction-velocity gradient [12, 21]. Note that the threshold A = 0 separating the indefinite damping matrices
was found first in [26] for a general two-dimensional non-conservative gyroscopc system with dissipation.

2.4 Activating the bubble of instability by non-conservati ve positional forces

In the absence of dissipation, the non-conservative positional forces destroy the marginal stability of gyro-
scopic systems [46]. Assumingδ = κ = 0 in (12) and (13) we find that the eigenvalues of the branches
±(iω1 + iΩ) of the spectral mesh get positive real parts due to a non-conservative perturbation

λ±p = iω1 ± iΩ± ν

2ω1
, λ±n = −iω1 ± iΩ∓ ν

2ω1
. (23)

In contrast to the effect of indefinite damping, the circulatory forces destabilize one of the two modes at every
Ω, Fig. 3(b). In order to localize the instability in the vicinity of the nodes, a combination of circulatory and
dissipative forces is required.

With κ = 0 in (12) and (13) we describe the trajectories of the eigenvalues in the complex plane in presence
of dissipative and non-conservative perturbations(

Reλ +
trD
4

δ

)
(Imλ− ω1) =

Ων

2ω1
. (24)

Circulatory forces destroy the merging of modes shown in Fig. 2, causing the eigenvalues to move along
the separated trajectories. According to (23) and (24) the eigenvalues with|Imλ| increasing with an in-
crease in|Ω| move closer to the imaginary axis than the others, as shown inFig 4(b). The non-conservative
perturbation separates the bubble of instability and the adjacent hyperbolic eigenvalue branches into two
non-intersecting curves in the space(Ω, Imλ,Reλ). The remnants of the original bubble of instability yield
subcritical flutter at a frequencyω−cr < ω < ω+

cr with the gyroscopic parameter in the rangeΩ2 < Ω2
cr, where

Ωcr = δ
trD
4

√
− ν2 − δ2ω2

1 detD
ν2 − δ2ω2

1(trD/2)2
, ω±cr = ω1 ± ν

2ω1

√
− ν2 − δ2ω2

1 detD
ν2 − δ2ω2

1(trD/2)2
. (25)

Hence, in the presence of the non-conservative positional forces the excursions of eigenvalues to the right-
hand side of the complex plane shown in Fig. 4(b) are possible, even if the dissipation is full(detD > 0).
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Figure 5: Domains of asymptotic stability in the space(δ, ν,Ω) for different types of damping:detD < 0
(a),detD = 0 (b), detD > 0 (c).

Extractingν in the first of equations (25) yields approximation to the stability boundary in the space of the
parametersδ, ν, andΩ

ν = ±δω1trD

√
δ2 detD + 4Ω2

δ2(trD)2 + 16Ω2
. (26)

If detD ≥ 0 andΩ is fixed, the formula (26) describes two independent curves in the plane(δ, ν), inter-
secting with each other at the origin along the straight lines 2ν = ±ω1trDδ. FordetD < 0 equation (26)
describes in the plane(δ, ν) two branches of a closed loop, self-intersecting at the origin with the tangents
2ν = ±ω1trDδ. In the space of the three parameters the surface (26) is a cone with the “8”–shaped loop in
a cross-section, see Fig. 5(a). Asymptotic stability is inside the two of four pockets of the cone, selected by
the inequalityδtrD > 0. The singularity at the origin is the degeneration of a more general configuration
found in [26].

The domain of asymptotic stability bifurcates with the change of sign ofdetD. In case of indefinite damping
an instability gap exists due to the singularity at the origin, Fig. 5(a). FordetD = 0 the gap vanishes in
the directionν = 0, Fig. 5(b). Despite the full dissipation withdetD > 0 unfolds the singularity, the
memory about the instability gap is preserved in the two folds of the stability boundary with the locally
strong curvature, Fig. 5(c). When bothµ1 > 0 andµ2 > 0, the folds are more pronounced, if one of the
eigenvalues is close to zero. If the eigenvaluesµ1,2 have different signs, subcritical flutter is possible for any
combination ofδ andν including the case when the non-conservative positional forces are absent(ν = 0).

Independently on the structure of the matrixD, the primary role of dissipation is the creation of the bubble of
instability. It is submerged below the surfaceReλ = 0 in the space(Ω, Imλ,Reλ) in case of full dissipation
and partially lies in the domainReλ > 0 when damping is indefinite. Non-conservative positional forces
destroy the bubble into two branches and shift one of them to the region of positive real parts even in case of
full dissipation. Since the branch remembers the existenceof the bubble, the subcritical flutter is developing
near the nodes of the spectral mesh.

3 Example: A rotating circular string

The perturbative approach of the previous section, modifiedalong the lines of the work [3], is applicable
to thenon-discretizedboundary eigenvalue problems, associated with the rotating strings, rings, discs, and
shells in frictional contact for a wide class of available boundary conditions. We notice, however, that the
correct formulation of the boundary conditions for such problems is a delicate question, which is not resolved
yet in full in the existing literature, see, e.g., [36].
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Figure 6: A rotating circular string and its “keyboard” constituted by the nodes (marked by white and black)
of the spectral mesh (only 30 modes are shown).

The eigenvalue behavior predicted by the analysis of the general two-dimensional system of the previous
section was already observed in the works [5, 11, 40], who studied a rotating disc and a rotating circular
string in a point-wise contact with the stationary load systems.

For simplicity, following [5] we consider a circular stringof displacementW (ϕ, τ), radiusr, and mass per
unit lengthρ that rotates with the speedγ and passes atϕ = 0 through a massless eyelet generating a constant
frictional follower forceF on the string, as shown in Fig. 6. The circumferential tension P in the string is
assumed to be constant; the stiffness of the spring supporting the eyelet isK and the damping coefficient of
the viscous damper isD; the velocity of the string in theϕ direction has constant valueγr. This a somewhat
artificial system contains, however, the fundamental physics of interest, i.e. the interaction of rotating flexible
medium with a stationary constraint in which the inertial, gyroscopic, and centripetal acceleration effects,
together with the stiffness effects of the medium, are in dynamic equilibrium with the forces generated by
the constraint. With the non-dimensional variables and parameters

t =
τ

r

√
P

ρ
, w =

W

r
, Ω = γr

√
ρ

P
, k =

Kr

P
, µ =

F

P
, d =

D√
ρP

(27)

the substitution ofw(ϕ, t) = u(ϕ) exp(λt) into the governing equation and boundary conditions yieldsthe
boundary eigenvalue problem [5]

Lu = λ2u + 2Ωλu′ − (1− Ω2)u′′ = 0, (28)

u(0)− u(2π) = 0, u′(0)− u′(2π) =
λd + k

1− Ω2
u(0) +

µ

1− Ω2
u′(0), (29)

where′ = ∂ϕ. The non-self-adjoint boundary eigenvalue problem (28) and (29) depends on the speed of
rotation(Ω), and damping(d), stiffness(k), and friction(µ) coefficients of the constraint.

Since the unconstrained rotating string is a gyroscopic system, the eigenfunctions of the adjoint eigenvalue
problems, corresponding to a purely imaginary eigenvalueλ, coincide. Withu = C1 exp (ϕλ/(1− Ω)) +
C2 exp (−ϕλ/(1 + Ω)) assumed as a solution of (28) in (29), we find the characteristic equation, whose
roots yield the eigenvalues of the eigenvalue problem (28),(29)

λ+
n = in(1 + Ω), λ−n = in(1− Ω), n ∈ Z, (30)

with the eigenfunctionsu±n = cos(nϕ) ∓ i sin(nϕ). Two eigenvalue branchesλε
n = in(1 + εΩ) andλδ

m =
im(1 + δΩ), whereε, δ = ±1, intersect each other at the node(Ωεδ

mn, λεδ
mn) with

Ωεδ
mn =

n−m

mδ − nε
, λεδ

mn =
inm(δ − ε)
mδ − nε

, (31)
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where the double eigenvalueλεδ
mn has two linearly independent eigenfunctions

uε
n = cos(nϕ)− εi sin(nϕ), uδ

m = cos(mϕ)− δi sin(mϕ). (32)

Intersections (31), corresponding to the forward and backward traveling waves, occur in the subcritical region
(|Ω| < 1) and are marked in Fig. 6 by white dots. The black dots indicatethe intersections of the forward
and reflected waves taking place in the supercritical region(|Ω| > 1).

Using the perturbation theory [3, 8, 43] and taking into account expressions (31) and (32) we find an ex-
pression for the eigenvalues originated after the splitting of the double eigenvalues due to interaction of the
rotating string with the external loading system

λ = λεδ
nm + i

εn + δm

2
∆Ω + i

n + m

8πnm
(dλεδ

nm + k) +
ε + δ

8π
µ±√

c, (33)

where∆Ω = Ω− Ωεδ
nm, and

c =
(

i
εn− δm

2
∆Ω + i

m− n

8πmn
(dλεδ

nm + k) +
ε− δ

8π
µ

)2

− (dλεδ
nm + k − iεnµ)(dλεδ

nm + k − iδmµ)
16π2nm

.

Due to action of gyroscopic forces and an external spring double eigenvaluesλεδ
nm split in the subcritical

region|Ω| < 1 (ε < 0, δ > 0 andm > n > 0) as

λ = λεδ
nm + i

m− n

2
∆Ω + i

n + m

8πnm
k ± i

√
k2

16π2nm
+

(
m− n

8πmn
k − m + n

2
∆Ω

)2

, (34)

while in the supercritical region|Ω| > 1 (ε < 0, δ > 0 andm > 0, n < 0)

λ = λεδ
nm + i

m + |n|
2

∆Ω + i
|n| −m

8π|n|m k ±
√

k2

16π2|n|m −
( |n| −m

2
∆Ω− m + |n|

8πm|n| k
)2

. (35)

Therefore, for|Ω| < 1 the spectral mesh collapses into separated curves demonstrating avoided crossings;
for |Ω| > 1 the eigenvalue branches overlap forming the bubbles of instability with eigenvalues having
positive real parts, see Fig. (7)(a). From (35) a linear approximation follows to the boundary of the domains
of supercritical flutter instability in the plane(Ω, k) (gray resonance tongues in Fig. (7)(b))

k =
4π|n|m(|n| −m)
(
√|n| ± √

m)2

(
Ω− |n|+ m

|n| −m

)
. (36)

In the subcritical region we focus on the nodes of the spectral mesh atΩ = 0 as the most relevant to the
problems of acoustics of friction. Since in this casem = n andε = −δ, we find that the double eigenvalue
in splits due to action of gyroscopic forces and an external spring as

λ = in + i
k

4πn
± i

√
n2Ω2 +

k2

16π2n2
(37)

demonstrating the avoided crossing, see Fig. (7)(a). The effect of damping and gyroscopic forces yields(
Reλ +

d

4π

)2

+ n2Ω2 =
d2

16π2
, Imλ = n, (38)

n2Ω2 − (Imλ− n)2 =
d2

16π2
, Reλ = − d

4π
, (39)

The lower branch of the hyperbola (37) passes through the node Imλ = n, while the upper one intersects the
axisΩ = 0 at Imλ = n + k

2πn in the plane(Ω, Imλ), see Fig. 7(a). In the two-dimensional case the reason
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Figure 7: (a) Deformation of the spectral mesh of the rotating string interacting with the external spring with
k = 2, (b) approximation (36) to the corresponding tongues of thesupercritical flutter, (c,d) effect of the
external damper withd = 0.3 near the node(0, 2) of the spectral mesh.

for such a degenerate behavior is zero eigenvalue in the matrix K of external potential fores. The external
damper creates a latent source of subcritical flutter instability exactly as it happens in two dimensions when
D has one zero eigenvalue. Indeed, the bubble of instability (38) together with the adjacent hyperbola (39)
is under the planeReλ = 0, touching it at the origin, as shown in Fig. 7(c),(d).

Deformation patterns of the spectral mesh obtained by the perturbation theory and shown in Fig. 7, qualita-
tively agree with the results of numerical calculations forthe string [5] and for the disc [40]. They show that
the perturbations from apoint-wiseexternal source of potential, damping, and friction forcesare degener-
ate. Even without the friction term in (29) the degeneracy ofthe model persists, as is clearly seen from the
comparison of Fig. 7(a),(d) with Fig. 1(c) and Fig. 2(a). Similar effect was detected for the rotating disc in a
point-wise frictional contact in [11, 40].

Below we show that the degeneracy of the perturbation can be easily resolved. For this purpose we consider
a discretized equations of the string, which follow from (1)with ωs = s. We find the structure of the
matricesD andK from the desired behaviour of the eigenvalues originated after the splitting of the double
eigenvalues at the nodes of the spectral mesh.

Assuming for simplicity thatn = 2 and, hence,ω1 = 1, ω2 = 2, we find that the eigenvalue branches of the
spectral mesh cross in the supercritical region|Ω| > 1 of the(Ω, Imλ)-plane at the four points(±3,±4). In
the subcritical region|Ω| < 1 there exist eight crossings(±1/3,±4/3), (0,±1), and(0,±2), see Fig. 8(a).
Splitting of the double eigenvalueλ0 = iω0 with the eigenvaluesu1 andu2 at Ω = Ω0 is given by the
formuladet(F + (λ− λ0)G) = 0, where the entries of the matricesG andF are [3]

Gij = 2iω0ūT
i uj + 2Ω0ūT

i Guj,

Fij = (2iω0ūT
i Guj + 2Ω0ūT

i G2uj)(Ω − Ω0) + iω0ūT
i Dujδ + ūT

i Kujκ + ūT
i Nujν. (40)

For example, at the supercritical intersection of the branchesi(1 + Ω) and−2i(1 − Ω) the double eigen-
valueλ0 = 4i, at Ω0 = 3 has the eigenvectorsu1 = (−i/2, 1/2, 0, 0)T , u2 =

√
2(0, 0,−i/4, 1/4)T .

Calculating the matricesG andK and then the first-order approximations to the eigenvalues,we find that
the perturbation of the stiffness matrixκK yields the supercritical flutter when

κ >
8(Ω− 3)

trK + k11 + k22 ±
√

8(k14 − k23)2 + 8(k13 + k24)2
, (41)

wherekij are the entries of the matrixK. The subcritical intersection of the modes2i(1 − Ω) andi(1 + Ω)
atΩ0 = 1/3 originates the double eigenvalueλ0 = 4i/3 with the eigenvectorsu1 = (−i/2, 1/2, 0, 0)T and
u2 =

√
2(0, 0, i/4, 1/4)T . It is easy to verify that in this case the instability domainin theΩ, κ-plane does
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Figure 8: A2n = 4-dimensional discretized model of the rotating circular string: (a) spectral mesh, (b) the
effect of indefinite damping withd = 0.1 and stiffness variation withκ = 0.003 on (b) imaginary parts of
the eigenvalues (c),(d) on the real parts.

not exist whenδ = 0 andν = 0. In the presence of damping subcritical flutter is possible,which follows
from the formula for the eigenvalue splitting for the fixedΩ = Ω0 = 1/3

λ=
4i
3
−4δRea−3iκIma

48
± 1

48

√
(4δReb− 3iκImb)2+8(4δRec− 3iκImc)2+8(4δRed− 3iκImd)2, (42)

where

Rea = 2d22 + d44 + d33 + 2d11, Ima = 2k11 + 2k22 + k44 + k33,

Reb = 2d22 − d44 + 2d11 − d33, Imb = 2k11 − k33 − k44 + 2k22,

Rec = d14 + d23, Imc = k14 + k23, Red = d24 − d13, Imd = k13 − k24. (43)

According to (42) in theκ, δ-plane the instability domain is inside of the sector

δ > ± 3κ
4Rea

√
−(ImbReb + ImcRec + ImdRed)2 − (Imb2 + Imc2 + Imd2)Rea2

Reb2 + Rec2 + Red2 −Rea2
, (44)

which is inclined in such a manner that in the planeΩ, κ the flutter domain has the form of an ellipse. In
theΩ, δ, κ-space the instability domain has the conical shape. The space orientation of the cones in the sub-
and subcritical domains is substantially different, whichexplains the invisibility of the flutter domains in the
subcritical range and their simultaneous existence in the supercritical range forδ = 0. Using the condition
(44) we easly construct the perturbations, yielding flutternear all the nodes in the subcritical region

D =


−2 0 0 1
0 2 0 0
0 0 3 0
1 0 0 4

 , K =


1 1 3 4
1 5 3 2
3 3 3 7
4 2 7 7

 , (45)

as is seen in Fig. 8(b)-(d). The matricesD andK are indefinite with the eigenvalues2, 3, 4.162277660,
−2.162277660 and4.011016866, 15.39075619, −0.9102103430, −2.491562713, respectively.

Conclusion

Supporting an attractive thesis by Chan et al. [39], “Flutter instabilities in brake systems occur primarily as a
result of symmetry [breaking]; the frictional mechanism which has been the subject of much research over the
past forty years is of secondary importance,” the sensitivity analysis of the present paper demonstrates how
the nodes of the spectral mesh, situated in the subcritical range, may serve as the “keyboard” of a rotating
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elastic body of revolution. The frictional contact is a source of non-Hamiltonian and symmetry-breaking
perturbations. In the vicinity of the “keys” of the “keyboard” damping creates eigenvalue bubbles, which are
dangerous by the ability to get positive real parts in presence of non-conservative positional forces or even
without them, if the damping is indefinite. The activated bubbles of instability cause subcritical flutter of a
rotating structure, forcing it to vibrate at a frequency close to the double frequency of the node and at the
angular velocity close to that of the node. An advantage of the sensitivity analysis of the spectral mesh to
arbitrary perturbations is in selecting the generic behavior of eigenvalues and thus the generic perturbations
yielding flutter or stability. For example, the observed degeneracy in the movement of eigenvalues of the
rotating string and disc evidences that a point-wise contact leads to the semi-definite perturbation operators,
which suppress generic instability mechanism behind the squeal. The effect seems to be similar to the so-
called Herrmann-Smith paradox of a beam resting on a uniformWinkler elastic foundation and loaded by
a follower force [47]. Therefore, more correct descriptionof the frictional contact would take into account
the finite dimensions of the pads as well as the dependence of their characteristics on material coordinates.
The size of the friction pads and their placement with respect to the rotating body should select the particular
node of the spectral mesh that produces an unstable complex eigenvalue [48, 49]. The selection rules as well
as the optimal distribution of the stiffness, damping, and friction characteristics of the pads can be effectively
investigated with the approach developed in the present paper.
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