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Abstract

In the present paper eigenvalue problems for non-selfadjoint linear differential operators

smoothly dependent on a vector of real parameters are considered. Bifurcation of eigenval-

ues along smooth curves in the parameter space is studied. The case of a multiple eigenvalue

with the Keldysh chain of arbitrary length is investigated. Explicit expressions describing bi-

furcation of eigenvalues are found. The obtained formulae use eigenfunctions and associated

functions of the adjoint eigenvalue problems as well as the derivatives of the differential op-

erator taken at the initial point of the parameter space. These results are important for the

stability theory, sensitivity analysis and structural optimization. As a mechanical application

the extended Beck problem of stability of an elastic column subjected to the partially tangential

follower force, the Smith–Herrmann problem as well as the problem of flutter instability of a

rectangular panel at high Mach numbers are considered and discussed in detail.

1. Introduction

Non-selfadjoint operators appear in non-conservative problems of mechanics and physics.

In the discrete problems such operator is just a nonsymmetrical matrix. It is known that in the

generic case the spectrum of a multiparameter family of nonsymmetrical matrices contains multi-

ple eigenvalues with the Jordan chains [22]. It turns out that such eigenvalues define geometrical

properties of the stability boundary of a corresponding non-conservative system [22]. An effective

tool of analysis of this boundary is the study of a bifurcation of eigenvalues due to change of pa-

rameters [2, 3, 12]. From the point of view of applications this is a basis for the sensitivity analysis

of structures, which in the case of simple eigenvalues was developed in [19]. To do the sensi-

tivity analysis in continuous case we need to study bifurcations of eigenvalues in multiparameter

families of non-selfadjoint differential operators.
1Visiting the Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark.
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The general theory of non-selfadjoint operators ascending to works by G. Birkhoff was then

developed by many mathematicians. M.V. Keldysh was the first who generalized the notion of the

Jordan chain of vectors to a wide class of non-selfadjoint operators [1]. For that reason it was

called the Keldysh chain [7]. In the work [6] the perturbation theory for nonsymmetrical matrices

and non-selfadjoint operators smoothly dependent on one parameter was developed. This theory

allows to find the perturbation coefficients of eigenvalues and eigenvectors. The study of generic

properties of the spectrum of the multiparameter family of non-selfadjoint differential operators

remains difficult problem. It seems that in the infinite dimensional case there is still no analogue to

the Arnold theory of versal deformations of matrices, allowing to classify the generic singularities

of the bifurcation and stability diagrams: even in the selfadjoint case the progress is quite slow

[13].

In our paper we combine the ideas of [1], [6] and [2] together. This allows us to find the ex-

plicit formulae describing bifurcation of multiple eigenvalues with the Keldysh chain of any length.

These formulae suit for a wide class of nonselfadjoint eigenvalue problems arising in applications

and take into account parameters both in the differential expression and in the boundary condi-

tions. Besides, our approach allows to study multiple eigenvalues both in regular and degenerate

cases. Analogous approach was applied recently to the investigation of stability problems for con-

tinuous conservative systems with gyroscopic forces [4].

2. Basic relations

Consider an eigenvalue problem for a linear differential operator L (using the notation of M.A.

Naimark [5]) defined by

l(u) = �u; U s(u) = 0; s = 1; : : : ; m; (1)

where

l(u) �
mX
i=0

ai
dm�iu

dxm�i
;

U s(u) �
m�1X
i=0

�
�s

i

diu

dxi

����
x=0

+ �s

i

diu

dxi

����
x=1

�
:

The operators U s(u) are linear forms with respect to the variables u(0), u0(0), : : :, u(m�1)(0); u(1),

u0(1), : : :, u(m�1)(1). These variables are values of the function u 2 C(m)[0; 1] and its derivatives

up to (m� 1) – th order evaluated at the points x = 0 and x = 1. It is assumed that the forms U s,

s = 1; 2; : : : ; m are linearly independent.
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The differential expression

l�(v) �
mX
i=0

(�1)m�iai
dm�iv

dxm�i
; ;

where the overbar denotes complex conjugation, is called adjoint to the differential expression

l(u) [5]. With the use of integration by parts it can be shown thatZ
1

0

l(u)�vdx = P (�; �) +

Z
1

0

ul�(v)dx; (2)

whereP (�; �) – is a bilinear form of variables

� = (u(0); u0(0); : : : ; u(m�1)(0); u(1); u0(1); : : : ; u(m�1)(1)) (3)

� = (v(0); v0(0); : : : ; v(m�1)(0); v(1); v0(1); : : : ; v(m�1)(1)): (4)

Let us choose the forms Um+1; Um+2; : : : ; U2m so that U1; U2; : : : ; U2m be linearly independent.

Then variables (3) can be expressed as linear combinations of the forms U1; U2; : : : ; U2m. Substi-

tuting these linear combinations into (2), we get the Lagrange identity [5]

(l(u); v)� (u; l�(v)) = U1V 2m + � � �+ U2mV 1; (5)

where (u; v) =
R
1

0
u(x)v(x)dx is the scalar product of functions u; v 2 Cm[0; 1].

The coefficients at U1; U2; : : : ; U2m are linear forms with respect to variables (4), and are de-

noted by V 2m; : : : ; V 2; V 1, respectively. The forms V 1; V 2; : : : ; V 2m are linearly independent [5].

The boundary conditions

V s(v) = 0; s = 1; : : : ; m

are called adjoint to boundary conditions (1). The differential operator L�, corresponding to the

differential expression l�(v) and to the adjoint boundary conditions, is called adjoint to the operator

L, and we say that the eigenvalue problem

l�(v) = �v; V s(v) = 0; s = 1; : : : ; m; (6)

is adjoint to eigenvalue problem (1).

Due to boundary conditions (1), (6) identity (5) for the adjoint operators L and L� takes a

simple form: (l(u); v) = (u; l�(v)). If we consider differential expression l(u) and assume that the

function u satisfies the non-homogeneous boundary conditions

U s(u) = Gs; s = 1; 2; : : : ; m; (7)
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then the Lagrange identity (5) is

(l(u); v)� (u; l�(v)) = G1V 2m + � � �+GmV m+1: (8)

This is valid since v satisfies boundary conditions (6).

3. Collapse of the Keldysh chain

Suppose that in eigenvalue problem (1) the coefficients of the differential expression l(u) and

the coefficients of the forms U s(u) are real functions, smoothly dependent on a vector of real pa-

rameters p = (p1 ; p2 ; : : : ; pn), i.e. are C1 – functions on an open set 
 � Rn. Let �0 be an

eigenvalue of the operator L at the point p = p0. We are interested in bifurcation of eigenvalues

along the curves p(�) = p0 + �e + �2d + o(�2), emitted from the initial point p0 in the parame-

ter space. The vector e = (e1 ; e2 ; : : : ; en) defines the direction of a curve, and � � 0 is a small

parameter.

Due to variation of parameters the differential expression l(u) and the forms U s(u) take incre-

ments

l(u)=l0(u)+�l1(u)+�
2l2(u)+ : : : ; U s(u)=U s

0
(u)+�U s

1
(u)+�2U s

2
(u)+ : : : ; (9)

where l0 = l(u)j
p=p0

, U s

0
= U s (u)j

p=p0
, the differential expressions l1(u), l2(u) look like

l1(u) =
nX
i=1

ei
@l

@pi
(u); l2(u)=

nX
i=1

di
@l

@pi
(u)+

1

2

nX
i;j=1

eiej
@2l

@pi@pj
(u) (10)

and for the forms U s

1
(u), U s

2
(u) we have

U s

1
(u) =

nX
i=1

ei
@U s

@pi
(u); U s

2
(u)=

nX
i=1

di
@U s

@pi
(u)+

1

2

nX
i;j=1

eiej
@2U s

@pi@pj
(u): (11)

All the derivatives in formulae (10), (11) are evaluated at the point p = p
0
. Thus, we deal with the

regular perturbations which do not increase the order of the non-perturbed operator L0 = L(p0)

[6].

Consider an eigenvalue �0 with the Keldysh chain of length k > 0. This means that at

p = p
0
there exist an eigenfunction u0(x) and associated functions u1(x), u2(x), : : :, uk�1(x),

corresponding to the �0 and satisfying the equations and the boundary conditions

l0(u0) = �0u0; U s

0
(u0) = 0;

l0(ui) = �0ui + ui�1; U s

0
(ui) = 0;

i = 1; : : : ; k � 1; s = 1; : : : ; m:

(12)
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For the adjoint operator L� we have

l�
0
(v0) = �0v0; V s

0
(v0) = 0;

l�
0
(vi) = �0vi + vi�1; V s

0
(vi) = 0;

i = 1; : : : ; k � 1; s = 1; : : : ; m:

(13)

The notion of the Keldysh chain is an analogue of the Jordan chain of vectors if we consider the

eigenvalue problems for differential operators [1, 5, 7]. Eigenfunctions and associated functions of

adjoint operators L and L� are related by the following conditions

(uj; v0) = 0; j = 0; : : : ; k � 2; (uk�1; v0) � (u0; vk�1) 6= 0; (14)

(uj�1; vi) � (uj; vi�1); i; j;= 1; : : : ; k � 1: (15)

This naturally follows from equations (12) and (13) subject to the relation (l(u); v) = (u; l�(v))

stated for the adjoint operators.

The orthogonality of the eigenfunctions (u0; v0) = 0 at the points of the flutter boundary of the

pure circulatory systems [10] was called ”flutter condition” in the work [8]. One can see from

(14) that the ”flutter condition” is a simple consequence of existing at a multiple eigenvalue the

Keldysh chain of length k � 2.

A variation of the vector of parameters p = p
0
+ �e + o(�) leads to the perturbation of eigen-

values and eigenfunctions. In the case of a multiple eigenvalue with the Keldysh chain of length

k the expansions of eigenvalues and eigenfunctions contain terms with fractional powers of the

small parameter �j=k, j = 0; 1; 2; : : : [6]:

� = �0 + �1=k�1 + �2=k�2 + �3=k�3 + : : :

u = u0 + �1=kw1 + �2=kw2 + �3=kw3 + : : :
(16)

Substituting expansions (9) and (16) into eigenvalue problem (1), we get expressions which de-

termine the first order perturbations of the eigenvalue �0 and the eigenfunction u0

l0(wj)��0wj=�ju0 +

j�1>0X
i=1

�j�iwi = 0; U s

0
(wj)=0; j = 1 : : : k � 1: (17)

l0(wk)��0wk=�ku0�l1(u0) +
k�1>0X
i=1

�k�iwi = 0; U s

0
(wk)=�U s

1
(u0): (18)
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The functions wj can be found from equations (12) and (17) in the form

wj = �
j

1
uj +

j�1X
p=0

jpup; j = 1; : : : ; k � 1; (19)

where jp are arbitrary constants.

Consider the inner product of the function v0 with the left and right hand sides of (18). Using

then expression (19) for wj, equations (14), (15), and the Lagrange identity (8), which in this case

has the form

(l0(wk)� �0wk; v0)� (wk; l
�

0
(v0)� �0v0) = �

mX
s=1

U s

1
(u0)V

2m�s+1

0
(v0);

we get the coefficient �1 in the expansion of the eigenvalue �

�k
1
=

(l1(u0); v0)�
P

m

s=1
U s

1
(u0)V

2m�s+1

0
(v0)

(uk�1; v0)
: (20)

Introducing the scalar product ha;bi of vectors a;b 2 Rn and taking into account expressions

(10) and (11) we can rewrite (20) in the form [2]

�1 =
k
p
hfk; ei+ ihgk ; ei; (21)

where the real vectors fk and gk correspond to the k – fold eigenvalue �0 at the point p = p
0
and

their components are

f
j

k
+ ig

j

k
=

( @l

@pj
(u0); v0)�

P
m

s=1

@Us

@pj
(u0)V

2m�s+1

0
(v0)

(uk�1; v0)
: (22)

The right hand side of (21) takes k complex values. If the radicand in (21) is not zero, the

expression � = �0 + �1=k�1 + o(�1=k) describes the splitting of the k – fold eigenvalue due to

change of parameters along a curve emitted in the direction e.

After the splitting the length of the Keldysh chain decreases from k to 1 and we say that the

collapse of the Keldysh chain occurs.

In particular, equations (16), (21) describe the behavior of a simple eigenvalue for k = 1, and

for k = 2 – the splitting of a double eigenvalue �0 with the Keldysh chain of length 2, which are

the most important cases in applications.

Consider now for a double eigenvalue the degenerate case

hfk; ei+ ihgk; ei = 0: (23)
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It follows from condition (23) that the coefficient �1 in expansions (16) becomes zero. Substitution

of expansions (16) into eigenvalue problem (1) gives equations determining second-order terms

�2 and w2

l0(w2)� �0w2 = �2u0 � l1(u0); U s

0
(w2) = �U s

1
(u0); (24)

l0(w4)� �0w4 = �4u0 � l2(u0) + �2w2 � l1(w2); U s

0
(w4) = �U s

1
(w2)� U s

2
(u0): (25)

Multiplying both parts of equation (25) by v0 and using the Lagrange identity (8) we get

�(w2; v0)� (l1(w2); v0)� (l2(u0); v0) +
mX
s=1

(U s

1
(w2) + U s

2
(u0))V

2m�s+1

0
(v0) = 0: (26)

The similar procedure gives the term (w2; v0)

(w2; v0) = �2(u0; v1)� (l1(u0); v1) +
mX
s=1

U s

1
(u0)V

2m�s+1

0
(v1): (27)

The solution of equation (24) has the form w2 = �2u1+ ŵ2+ u0, where  is an arbitrary constant

and ŵ2 is a particular solution of the boundary value problem

l0(ŵ2)� �0ŵ2 = �l1(u0); U s

0
(ŵ2) = �U s

1
(u0): (28)

The solution of boundary value problem (28) exists due to degeneration condition (23), playing

here the role of the solvability condition. Substituting (27) and the expression for w2 into (26) we

get the quadratic equation on �2

�2
2
+ �2a1 + a2 = 0: (29)

The coefficients a1 and a2 are determined by the expressions

a1=hh; e�i+ihk; e
�
i; a2=hHe�; e�i+ihKe

�
; e

�
i�hf2;di�ihg2;di: (30)

The real vectors h, k and real symmetric matricesH,K are defined by the relationships

hj+ikj =P
m

s=1
[@U

s

@pj
(u0)V

2m�s+1

0
(v1)+

@Us

@pj
(u1)V

2m�s+1

0
(v0)]

(u0; v1)
�
( @l

@pj
(u0); v1)+( @l

@pj
(u1); v0)

(u0; v1)
; (31)

Hjr+iKjr =

�( @l

@pj
(zr); v0)�(1

2

@2l

@pj@pr
(u0); v0)+

P
m

s=1
[@U

s

@pj
(zr)+

1

2

@2Us

@pj@pr
(u0)]V

2m�s+1

0
(v0)

(u0; v1)
; (32)
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where the functions zr(x) (ŵ2 =
P

n

r=1
er
�

zr) are solutions of the boundary value problems

l0(zr)� �0zr = � @l

@pr
(u0); U s

0
(zr) = �@U

s

@pr
(u0); r = 1 : : : n:

Thus, bifurcation of the double eigenvalue �0 in degenerate case (23) is described by the formula

� = �0 + ��2 + o(�), where �2 is a root of equation (29).

4. Application to non-conservative stability problems

Let us consider the non-conservative systems, described by the partial differential equations

�y + l(y) = 0; U s(y) = 0; s = 1 : : :m; (33)

where dots mean differentiation with respect to time t, while l(y), U s(y) are respectively the linear

differential expression in terms of x 2 [0; 1] and the boundary forms defined in Section 2. Such

systems are usually called circulatory systems [9, 10, 11, 12]. Looking up the solution of equation

(33) in the form y(x; t) = u(x) exp(i
p
�t) we come to the eigenvalue problem (1). A circulatory

system is stable if and only if all the eigenvalues � are positive and semisimple. If all � are real and

some of them negative then the circulatory system is statically unstable (divergence). Existence

of at least one complex eigenvalue means flutter instability [9, 10, 12].

Recall that the coefficients of the differential expression l(u) and the coefficients of the forms

U s(u) are real functions, smoothly dependent on a vector of real parameters p = (p1 ; p2 ; : : : ; pn).

Below we consider only real eigenvalues �. It follows from the basic theorems of the theory of

ordinary differential equations [14] that solutions z1; : : : ; zm of the equation (1) with the initial

conditions (Æji is the Kronecker symbol)

z
(i�1)

j
(0) = Æji; i; j;= 1; : : : ; m;

forming the fundamental system of solutions of equation (1), smoothly depend on � and p. The

characteristic determinant

� � det

2
6666664

U1(z1) U1(z2) : : : U1(zm)

U2(z1) U2(z2) : : : U2(zm)
...

... . . . ...

Um(z1) Um(z2) : : : Um(zm)

3
7777775

is thus a smooth function of the spectral parameter � and the vector p: � = �(�;p).
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We assume that at some fixed value p0 of the vector p the spectrum of the operator L formed by

the differential expression l(u) and boundary conditions U s(u) = 0 is discrete [5]. The eigenvalues

� can be simple or multiple roots of the characteristic equation �(�;p0) = 0. If at p = p
0
the

characteristic equation has the k – fold real root � = �0, i.e. �(�0;p0) = @�=@� = : : : =

@k�1�=@�k�1 = 0, @k�=@�k 6= 0 then according to Malgrange’s preparation theorem [15] there

exists a neighborhood U0 � R �Rn of the point (�0;p0), where�(�;p) has the form

�(�;p) =

"
(�� �0)

k +
k�1X
i=0

(�� �0)
iai(p)

#
b(�;p): (34)

The functions a0(p), : : :, ak�1(p) and b(�;p) are smooth, ai(p0) = 0, b(�0;p0) 6= 0.

Let for example �0 be a simple real root of the equation�(�;p0) = 0. Then, due to (34) we can

write � = �0 � a0(p), and � remains real and simple in some neighborhood of the point p0. We

can conclude from this fact that if at p = p
0
all the eigenvalues of the operator L are positive and

simple, then p0 is the inner point of the stability domain of circulatory system (33).

Similarly, the points of the parameter space, corresponding to either simple zero eigenvalue

or real double eigenvalue with the Keldysh chain of length 2, form smooth surfaces of dimension

n � 1. Indeed, if �0 = 0 at p = p
0
, then in the vicinity of p0 we have � = �a0(p). The equation

a0(p0) = 0 defines a hypersurface in the parameter space.

If �0 is a double eigenvalue, then according to (34) its behavior near the point p0 is described

by the quadratic equation

(�� �0)
2 + a1(p)(�� �0) + a0(p) = 0: (35)

It follows from (35) that the eigenvalue �(p) remains double in the neighborhood of the point p0,

if p belongs to the hypersurface a2
1
(p)� 4a0(p) = 0.

It is clear that the stability of the system in the vicinity of these hypersurfaces depends on

behavior of the zero or the double eigenvalues due to change of parameters. According to (16),

(21), where we should put k = 1 or k = 2, the behavior of the simple zero eigenvalue is described

by the formula

� = �hf1; ei+ o(�); (36)

and the splitting of the real double �0 is governed by the expression

� = �0 �
p
�hf2; ei+ o(�1=2): (37)
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The inequality hf1; ei > 0 defines a set of such directions e that the curves p = p(�) emitted

along these vectors lie in the stability domain, i.e. a tangent cone to the stability domain. The

eigenvalue � becomes negative at hf1; ei < 0. Consequently, this inequality gives a tangent cone to

the static instability (divergence) domain. The eigenvalue remains zero up to the terms of order �2

on the curves, emitted in the directions e, such that hf1; ei = 0. Thus, the equation hf1;p� p
0
i = 0

defines a tangent plane to the surface, where the operator L has a simple zero eigenvalue. If other

eigenvalues remain simple and positive on this surface, then it forms a boundary between stability

and divergence domains. The vector f1 is the normal vector to the boundary and is directed to the

stability domain.

Analyzing splitting of the double eigenvalue with the formula (37) we can show that the points

of the parameter plane, corresponding to the real double eigenvalue with the Keldysh chain of

length 2, belong to the smooth parts of the boundary between the flutter domain and the stability

domain if �0 > 0, or divergence domain if �0 < 0. In this case the vector f2 is the normal vector to

the flutter boundary looking at the stability or divergence domains, respectively.

5. Stability boundaries of the extended Beck problem

As an example of a continuous non-conservative mechanical system we first consider a uni-

form elastic cantilevered column of length Lc, Fig. 1. Assume that the non-conservative force P ,

which can be represented as the sum of a tangential follower force and a potential load, is acting at

the free end of the column. The parameter � 2 [0; 1]measures the non-conservativity of the force

P . The case � = 1 means that the column is loaded by purely tangential follower force (Beck’s

problem [16]). If � = 0, then the force P is potential (conservative).

Consider the transverse vibrations of the column in the plane OXY , Fig. 1. In the non-

dimensional variables

x=X=Lc; y=Y=Lc; �=t=
p
�AL4

c
=EI; q=PL2

c
=EI

the differential equation describing small in-plane vibrations of the column and the appropriate

boundary conditions have the form

y0000(x; �) + qy00(x; �) + �y(x; �) = 0;

u(0; �) = u0(0; �) = u00(1; �) = u000(1; �) + (1� �)qu0(1; �) = 0:

10



Dots mean differentiation with respect to time � and primes denote differentiation w.r.t. coordinate

x.

Separating time by y(x; �) = u(x) exp
�
i
p
��
�
, we get the eigenvalue problem [17, 18]

l(u) � u0000 + qu00 = �u; (38)

U1(u) � u(0) = 0; U3(u) � u00(1) = 0;

U2(u) � u0(0) = 0; U4(u) � u000(1) + (1� �)qu0(1) = 0:
(39)

The corresponding adjoint eigenvalue problem looks like

l�(v) � v0000 + qv00 = �v; (40)

V 1(v) � �v(0) = 0; V 3(v) � v00(1) + �qv(1) = 0;

V 2(v) � v0(0) = 0; V 4(v) � �v000(1)� qv0(1) = 0;
(41)

and for the forms V 5 : : : V 8 we have

V 5�v(1); V 7��v00(0)�qv(0); V 6��v0(1); V 8�v000(0)+qv0(0): (42)

Substituting the general solution of differential equation (38)

u(x) = C1 cosh(ax) + C2 sinh(ax) + C3 cos(bx) + C4 sin(bx);

a =

s
�q

2
+

r
q2

4
+ �; b =

s
q

2
+

r
q2

4
+ �; � 6= �q

2

4
:

into boundary conditions (39) we obtain the condition of existing of a non-trivial solution u(x) to

eigenvalue problem (38), (39) in the form [18]

�(�; �; q)=0; (43)

��(2�+ (1� �)q2)(1 + cosh(a) cos(b)) + q(2� � 1)(q + ab sinh(a) sin(b)):

Equation (43) gives eigenvalues �, depending on the parameters � and q.

The vertical equilibrium of the column is stable if all the eigenvalues � are positive and semisim-

ple, i.e. each eigenvalue has the same number of eigenfunctions as its algebraic multiplicity. After

substitution � = 0 in equation (43) it gives possible values of the parameters � and q at which the

system loses stability statically [17]

�(q) =
cos(

p
q)

cos(
p
q)� 1

: (44)
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Figure 1: Extended Beck’s problem and its stability diagram.

Equation (44) defines the curve of simple zero eigenvalues, the part of which forms the boundary

between stability and divergence domains on the plane of parameters (�; q). The smooth parts of

the flutter boundary consist of such points (�; q) that �(�; q) is a double real eigenvalue. Calcula-

tion of the roots of characteristic equation (43) for the different values of the load parameter q (at a

fixed value of the parameter �) gives approximately the point, where two simple eigenvalues form

a double. Finding such points for the different values of the parameter � we get the curve of double

real eigenvalues.

The curves found subdivide the plane of the parameters (�; q) into stability (S), flutter (F), and

divergence (D) domains, Fig. 1. The boundaries between these domains are shown on Fig. 1.

by the firm thick lines while the dashed thick line shows the part of the curve of zero eigenvalues,

which belongs to the divergence domain. Note that the boundary of stability domain has a singular

point where the smoothness of the boundary is broken. The divergence boundary has two points

with the vertical tangents. One can see that while the influence of the non-conservative part of the

load q is small (� < 0:5) the column loses stability by divergence. Mainly non-conservative load

(� > 0:5) causes dynamical instability.

Our goal here is to demonstrate on the example of Beck’s problem the advantages of the theory

developed in the previous sections. It will be applied to finding linear and quadratic approximations

of the stability and instability domains both at singular and regular points of their boundaries. The

explicit expression describing the overlapping of the frequency curves near the flutter boundary will

be obtained and compared with the numerical results, described in [18]. Finally, we will obtain the

exact coordinates of the singular point of the stability boundary, show that this point corresponds

to the double zero eigenvalue with the Keldysh chain of length 2, and investigate the splitting of

12



this eigenvalue in the vicinity of the singularity.

Bifurcation of eigenvalues in the vicinity of the flutter boundary.

Consider a point p0 = (�0; q0) of the flutter boundary, where the spectrum of the operator L

contains double eigenvalue �0 with the Keldysh chain of length 2. Bifurcation of this eigenvalue

is described by equation (37). Substituting the differential expression l(u) from (38), the forms

U1; : : : ; U4 and V 5; : : : ; V 8 from (39), (42) into formula (22), we get the normal vector to the

boundary

f2 =

 
q0u

0

0
(1)v0(1)R

1

0
u0v1dx

;

R
1

0
u00
0
v0dx�(1��0)u00(1)v0(1)R

1

0
u0v1dx

!
: (45)

For evaluation of the vector f2 it is essential to know the eigenfunctions u0, v0 as well as the

associated functions u1; v1 at the double eigenvalue �0. Solution of eigenvalue problems (38), (39)

and (40), (41) yields [19]

u0(x) = cosh(ax)� cos(bx) + F (a sin(bx)� b sinh(ax)); (46)

v0(x) = cosh(ax)� cos(bx) +G(a sin(bx)� b sinh(ax)); (47)

where the coefficients F and G depend on the parameters � and q

F=
a2 cosh(a)+b2 cos(b)

ab(a sinh(a)+b sin(b))
; G=

(a2+�q) cosh(a)+(b2��q) cos(b))
b(a2+�q) sinh(a)+a(b2��q) sin(b) : (48)

Associated function u1 is a particular solution of the boundary value problem (12), where we

should put k = 2 and take the differential expression and the boundary forms from (38), (39). A

particular solution of ordinary linear differential equation with constant coefficients

u0000
1

+ qu00
1
� �0u1 = u0;

whose right hand side is the linear combination of trigonometric and hyperbolic functions (46),

has the form

û1 = x(C1 sin(bx) + C2 cos(bx) + C3 sinh(ax) + C4 cosh(ax)):

Substitution of û1 into equation (12) allows to determine the coefficients C1; : : : ; C4. After these

coefficients are found one tries solution of boundary value problem (12) in the form

u1 = û1 +D1 sin(bx) +D2 cos(bx) +D3 sinh(ax) +D4 cosh(ax):

13



The boundary conditions (12) serve for obtaining the unknown constants D1; : : : ; D4. After all

necessary manipulations we arrive at the associated function u1

u1(x) =
a sin(bx) + b sinh(ax) + F (a2 cos(bx)� b2 cosh(ax))

2ab(a2 + b2)
x+

+
A1 sinh(ax)� B1 sin(bx)

2ab(a2 + b2)(a sinh(a) + b sin(b))2
; (49)

where the coefficient F is taken from (48) while for the coefficients A1, B1 we have

A1=
sin(b)(b2 cos(b)�a2 cosh(a))+2ab cos(b) sinh(a)

a2
q+

+b(a2+b2)(1+ cosh(a) cos(b));

B1=
sinh(a)(b2 cos(b)�a2 cosh(a))�2ab cosh(a) sin(b)

b2
q+

+a(a2+b2)(1+ cosh(a) cos(b)):

Similarly, solving boundary value problem (13) with the differential expression and boundary forms

from (40), (41) we get the associated function v1

v1(x) =
a sin(bx) + b sinh(ax) +G(a2 cos(bx)� b2 cosh(ax))

2ab(a2 + b2)
x+

+
A2 sinh(ax)� B2 sin(bx)

2ab(a2 + b2)(b(a2 + �q) sinh(a) + a(b2 � �q) sin(b))2
; (50)

where the coefficient G is defined in (48) and the coefficients A2, B2 are

A2 = q sin(b)[[�a2b2 + �((a2 + b2)2 � �q2)] cosh(a) + cos(b)(b2 � �q)2]+

+2qab3(1� 2�) sinh(a) cos(b)+

+b(a2 + b2)[a2b2 + �2q2 + (a2b2 + �(1� �)q2) cos(b) cosh(a)];

B2 = q sinh(a)[[a2b2 � �((a2 + b2)2 � �q2)] cos(b)� cosh(a)(a2 + �q)2]�

�2qba3(1� 2�) sin(b) cosh(a)+

+a(a2 + b2)[a2b2 + �2q2 + (a2b2 + �(1� �)q2) cos(b) cosh(a)]:

The possibility of existing of associated functions at the critical values of the non-conservative

load in Beck’s problem was noted earlier in the work [20]. Nevertheless the explicit expressions

14



Figure 2: The eigenfunctions, associated functions and functions ŵ2(x) at the points (from left to

right) (1, 20.0509536) and (0.35431330, 17.0695748).
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for the associated functions in Beck’s problem seem to be obtained first in the present paper. Note

that despite of the eigenfunctions u0, v0 are defined to within arbitrary multipliers and associated

functions u1, v1 are defined to within the addends C1u0 and C2v0, respectively, the vector f2 does

not depend on these uncertainties.

Consider now the point p0 = (1; 20:0509536), corresponding to the double eigenvalue �0 =

121:347049. This point is known as critical for the column subjected to a pure tangential follower

force [16]. Substituting the values of �0 and p0 into (46)–(50) we obtain the functions u0, v0,

u1, v1, Fig 2. With the use of these functions equation (45) gives the normal vector to the flutter

boundary at the point p0 = (1; 20:0509536)

f2 = (35458:3181;�2296:10536):

Let us look at the splitting of the double eigenvalue �0 due to change of parameters in different

directions e on the parameter plane. Consider for example the vertical direction: e = (0; 1). Taking

into account that�p = �e = (0; q � q0) we get from (37)

� = 121:347049� 47:9176936
p
q0 � q: (51)

For the horizontal variation �p = (� � �0; 0) corresponding to the vector e = (1; 0) we have

� = 121:347049� 188:303792
p
� � �0: (52)

The results of probing of a small neighborhood of the point p0 in different directions are sum-

marized in Tab. 1. Thus, for example, for q = q0+0:00002, i.e. when the new point is situated above

the initial point p0, splitting yields � = 121:347049 � i0:21429444, and thus the point p0 + �p

belongs to the flutter domain, Fig. 1. Characteristic equation (43) gives for the same values of pa-

rameters two complex-conjugate eigenvalues, which differ from those found with the use of (51)

only in a sixth digit, Tab. 1.

Degeneration condition (23) defines the vector e
�
= (�1;�15:4428097) tangent to the flutter

boundary at the point p0 = (1; 20:0509536). Double eigenvalue �0 splits in the tangent direction

in accordance with equation (29)

� = �0 �
a1

2
�� �

2

q
a2
1
� 4a2 + o(�): (53)
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Table 1: Splitting of the double eigenvalue near the point p0=(1; 20:0509536).

(��;�q) � : Eqs:(51); (52); (56): � : Eq:(43)

(0; 2�10�5)
Re�1;2=121:347049

Im�1;2=�0:21429444

Re�1;2=121:342379

Im�1;2=�0:21422599

(0;�2�10�5)
�1=121:132755

�2=121:561343

�1=121:128319

�2=121:556963

(2�10�5; 0)
�1=122:189169

�2=120:504929

�1=122:188528

�2=120:504432

(�2�10�5; 0)
Re�1;2=121:347049

Im�1;2=�0:84212016

Re�1;2=121:338540

Im�1;2=�0:84201129

2�10�3e
�

�1=120:762103

�2=121:542851

�1=120:755389

�2=121:540824

Substitution of the differential expression l(u) from (38), and the forms U1; : : : ; U4, V 5; : : : ; V 8

from (39) and (42) into (30) – (32) gives the coefficients a1 and a2 in the form

a1 =
e�
2

R
1

0
(u0

0
v0
1
+ v0

0
u0
1
)dx� (e�

2
�0 + e�

1
q0)(v1(1)u

0

0
(1) + v0(1)u

0

1
(1))R

1

0
u0v1dx

;

a2 =
e�
2

R
1

0
v0
0
ŵ0

2
dx� (e�

2
�0 + e�

1
q0)v0(1)ŵ

0

2
(1)� e�

1
e�
2
v0(1)u

0

0
(1)R

1

0
u0v1dx

: (54)

The functions u0, v0, u1, v1 are presented by equations (46), (47), (49), (50). The function ŵ2(x),

Fig. 2., is a solution of boundary value problem (28), where the differential expressions l0, l1 and

forms U s

0
, U s

1
are derived from differential expression (38) and boundary forms (39) according to

(10), (11)

ŵ2(x) =
b sin(bx)� a sinh(ax) + Fab(cos(bx) + cosh(ax))

2(a2 + b2)
e�
2
x+

+
A3 sin(bx)� B3 sinh(ax)

2ab(a2 + b2)(b sin(b) + a sinh(a))2
e�
2
: (55)

The coefficient F in (55) is defined in (48) and for the coefficients A3 and B3 we have

A3=� a(a2 + b2)(q + ab sin(b) sinh(a)) + 2a2b(b sinh(a) cos(b)� a cosh(a) sin(b))�
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�2a3 cosh(a)(a sinh(a) + b sin(b));

B3=� b(a2 + b2)(q + ab sin(b) sinh(a)) + 2b2a(b sinh(a) cos(b)� a cosh(a) sin(b))+

+2b3 cos(b)(a sinh(a) + b sin(b)):

With the use of the eigenfunctions, associated functions and function ŵ2 we find from equations

(54) the coefficients a1 = 194:571965, a2 = �28633:4466. Substitution of these coefficients into

equation (53) gives approximate expressions for two simple eigenvalues which result from the

splitting of the double �0 in the tangent direction to the stability boundary

�1 = 121:347049� 292:473089�; �2 = 121:347049 + 97:9011324�: (56)

Let for example take � = 0:002, then the double eigenvalue �0 splits into two positive eigen-

values, Tab. 1. This means that the tangent vector e
�
= (�1;�15:4428097) lies in the stability

domain whence it follows that the flutter domain is convex at the point p0, Fig.1. At the same

values of the parameters the characteristic equation has very close solutions, Tab. 1, showing

thereby that the perturbation theory formulae (56) give a good approximation to the directly com-

puted eigenvalues.

Consider now the point p0 = (0:32112653; 19:4220703) on the boundary between flutter and

divergence domains, Fig. 1. In this point there exists the negative double eigenvalue �0 =

�46:4046486 with Keldysh chain of length 2. The normal vector to the flutter boundary evalu-

ated at this point by formula (45) is

f2 = (�53123:691; 0):

The corresponding tangent vector to the boundary follows from degeneration condition (23)

e
�
= (0; 1):

One can see that the normal vector is parallel to the �–axis and is situated in the divergence

domain, so the flutter boundary has a vertical tangent at the point p0 = (0:32112653; 19:4220703),

Fig. 1.

We are interested now in behavior of the frequency curves !(q), where !=
p
� is a frequency

of oscillations, in the vicinity of the point p0 of the boundary between the flutter and divergence
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Figure 3: The frequency curves (from left to right) by Eq. (58) and by the work [18].

domains. From the formula (29) it follows that along the curves p = p0 + �e
�
+ �2d + o(�2) the

double eigenvalue splits according to equation [21]

(�� �0)
2 + hh; e

�
i(�� �0)�+ hHe

�
; e

�
i�2 = �2hf2;di+ o(�2): (57)

Taking into account that along the curve p(�) tangent to the flutter boundary at the point p0

q � q0 = �e2
�

+ o(�); � � �0 = �e1
�

+ �2d1 + o(�2)

we convert expression (57) into

�
�� �0 +

h2

2
(q � q0)

�2

�
�
(h2)2

4
�H22

�
(q � q0)

2 = f 1
2
(� � �0): (58)

Formulae (31), (32) give the components of the vector h and matrixH

h1=686267882692882:; h2=32:1039479;

H11=0; H12=1917:18297; H22=93:4817323:

The double eigenvalue �0 does not split in the first approximation if the discriminant of (58) is

zero. This condition gives us the quadratic approximation of the flutter boundary near the point

p0 = (0:32112653; 19:4220703)

� = 0:32112653 + 0:0030906(q � 19:4220703)2: (59)

Equation (59) shows that the flutter domain is convex at the point p0, see Fig. 1. Equation

(58) approximates in the vicinity of the point q0; �0 the family of frequency curves !(q) =
p
�(q),
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parameterized by �, if we assume � = �(Im
p
�)2. At � = �0 equation (58) disintegrates into two

parts

q1=0:30878129(Im
p
�)2+5:09318321; q2=0:03464354(Im

p
�)2+17:814449: (60)

Parabolae (60) are symmetrical with respect to the axis q and are situated on the plane (q; Im
p
�).

At the points (19:4220703;�6:81209576) corresponding to two purely imaginary eigenfrequencies

! = �i6:81209576 these parabolae intersect.

On the left picture on Fig. 3 behavior of frequency curves described by equation (58) near one

of the intersecting points is shown. One can see that at � < �0 there exist two purely imaginary

frequencies meaning the static instability. With the increase of � frequency curves come closer

together, overlap and at � > �0 move apart, forming a zone of complex eigenvalues (flutter). On

the right picture on Fig. 3 the dependence of the two lowest eigenfrequencies ! =
p
� on the load

q at the different values of parameter � 2 [0:3; 1:5], obtained earlier in the work [18] by numerical

solution of characteristic equation (43) is shown. Comparing two pictures on Fig. 3 note a good

qualitative and quantitative agreement in behavior of frequency curves calculated by two different

methods on the range � 2 [0:3; 0:4].

Behavior of eigenvalues near the boundary between divergence and stability domains.

Consider a point p0 = (�0; q0) on the boundary between the stability and divergence domains,

where the spectrum of the eigenvalue problem (38), (39) contains a simple eigenvalue �0 = 0. Due

to variation of parameters a simple eigenvalue changes according to formula (36). Substituting

the differential expression l(u) from (38), the forms U1; : : : ; U4 and V 5; : : : ; V 8 from (39), (42) into

(22) we get the normal vector f1

f1 =

 
q0u

0

0
(1)v0(1)R

1

0
u0v0dx

;

R
1

0
u00
0
v0dx�(1��0)u00(1)v0(1)R

1

0
u0v0dx

!
: (61)

The eigenfunctions u0 and v0 at the simple zero eigenvalue have the form

u0 = sin(b)� xb cos(b)� sin(b) cos(bx) + cos(b) sin(bx); (62)

v0 = 1� cos(bx); b =
p
q0: (63)

These eigenfunctions are solutions of eigenvalue problems (38)–(41) at �0 = 0, and are presented

on Fig. 4.
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Figure 4: The eigenfunctions of the zero eigenvalue at the point p0 = (0:5; 9:86960440).

Consider the point p0 = (0:5; 9:86960440) on the divergence boundary described by equation

(44). Substituting eigenfunctions (62), (63) evaluated at this point into (61) we get the normal

vector to the divergence boundary

f1 = (78:9568352; 0):

Hence, the divergence boundary has the vertical tangent at the point p0, Fig. 1. Variation of

parameters �p = (� � �0; 0) changes the zero eigenvalue. According to (36) we have

� = 78:956835(� � �0): (64)

One can see that for � � �0 < 0 the eigenvalue �0 = 0 becomes negative. Therefore, the point

p0 + �p is inside the divergence domain, Fig. 1. If � � �0 > 0 we come to the stability domain,

Tab. 2.

The singularity 02 of the stability boundary. Figure 1 clearly shows that the flutter domain

has a common boundary with domains of stability and divergence. Recall that at the points of the

boundary between flutter and stability domains the spectrum of the differential operator contains

positive double eigenvalues while at the points of the boundary between the flutter and divergence

domains double eigenvalues are negative.

Thus, the double eigenvalue becomes double zero at such point of the flutter boundary that

separates stability and divergence domains. At the same time the point with double zero eigen-

value should belong to the curve of zero eigenvalues (44). Besides, due to (14) the orthogonality

condition
R
1

0
u0v0dx = 0 must be true at the points of the flutter boundary. It is clear that this

integral evaluated at the points of curve (44) becomes zero only at the point, corresponding to the

double zero eigenvalue.
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Table 2: Changing of zero eigenvalue near the point p0 = (0:5; 9:86960440).

(��;�q) � : Eq:(64) � : Eq:(43)

(10�4; 0) �=0:00789568 �=0:00789498

(�10�4; 0) �=� 0:00789568 �=� 0:00789639

Integrating the product of the eigenfunctions u0(x) and v0(x) from (62), (63) over the range

[0; 1] we come to the transcendental equation, which the ordinate of the desired point must satisfy

q0 = (
p
q0 � 2 sin(

p
q0))(

p
q0(1 + 2 cos(

p
q0))� 4 sin(

p
q0)): (65)

The minimal element of the set of solutions of equation (65) at q0 > 0 is q0 = 17:0695748. Sub-

stituting this solution into equation (44), we find the corresponding value of the second parameter

�0 = 0:35431330.

Note that equation similar to (65) was derived first in the work [17] from the analysis of char-

acteristic equation (43) and without use of the eigenfunctions. Unfortunately, formula (3.23) of

the article [17] contains a misprint: the first term k2
2
l2 cos2 k2l should be read as k22l

2 cos k2l. Nev-

ertheless, the coordinates of the singular point found in [17] are correct and coincide with those

obtained from equation (65).

Thus, at the point p0 = (0:35431330; 17:0695748) there exists the double eigenvalue �0 = 0

with Keldysh chain of length 2. Following V.I. Arnold [22] we denote this point by the symbol 02,

where the upper index means the length of the Keldysh chain corresponding to the double zero

eigenvalue.

The bifurcation of double eigenvalue is described by formula (37). To evaluate the normal vec-

tor f2 at this point one needs to know the associated functions u1, v1 at the double zero eigenvalue

along with the eigenfunctions u0; v0. Solving at k = 2 and � = 0 boundary value problems (12),

(13) with the differential expressions and boundary forms from (38)–(41) we get

u1=� cot(b)

6b
x3+

1

2b2
x2+

cot(b)(cos(bx)� 1) + sin(bx)

2b3
x+

+
(bx� sin(bx))(b + 2b cos(b)� 2 sin(b))

2b4 sin2(b)
; (66)
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Table 3: Splitting of the double zero eigenvalue near the singular point p0 =

(0:35431330; 17:0695748).

(��;�q) � : Eq:(69); Eq:(70) � : Eq:(43)

(0; 10�4)
Re�1;2=0

Im�1;2=�0:32007804

Re�1;2=�0:00151188

Im�1;2=�0:32007586

(0;�10�4)
�1=0:32007804

�2=� 0:32007804

�1=0:32159210

�2=� 0:31856833

(10�4; 0)
Re�1;2=0

Im�1;2=�1:55848689

Re�1;2=0:02668744

Im�1;2=�1:55823291

(�10�4; 0)
�1=1:55848689

�2=�1:55848689

�1=1:53205170

�2=�1:58543004

�10�5e
�

�1=�0:01207531

�2=�0:000431084

�1=�0:01207543

�2=�0:000431085

10�5e
�

�1=0:01207531

�2=0:000431084

�1=0:01207520

�2=0:000431082

v1=
x+x2

2b2
+
x�1

2b3
sin(bx)+

b2 cos(b)� sin2(b)

b4(b cos(b)� sin(b))
(sin(bx)�bx); (67)

where b =
p
q0.

Substituting eigenfunctions (62), (63) and associated function (67) into expression (45), we

find the normal vector to the flutter boundary at the point p0 = (0:35431330; 17:0695748)

f2 = (�24288:8139;�1024:49949): (68)

Knowledge of the normal vector allows us to study the neighborhood of the point on the flutter

boundary in any direction e such that hf2; ei 6= 0. In particular, for two orthogonal directions e

= (1; 0) and e = (0; 1), we get

�=� 155:848689
p
�0 � �; �=� 32:0078037

p
q0 � q; (69)

appropriately. It is easy to see that in typical situation the double zero eigenvalue splits either into

complex-conjugate pair or into two real eigenvalues, one of which is negative, Tab. 3. Thus, the
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normal vector f2 at the point p0 is directed into the divergence domain. The inequality hf2; ei > 0

defines the tangent cone to this domain, and hf2; ei < 0 defines the tangent cone to the flutter

domain, Fig. 1. Only curves, emitted in the tangent direction to the boundary can lead to the

stability domain from the singular point.

Using the degeneration condition hf2; e�i = 0we choose the tangent vector e
�
=(1;�23:7079804).

To examine whether this vector points to the stability domain we should consider bifurcation of a

double zero eigenvalue in the degenerate case. Substituting eigenfunctions (62), (63), associated

functions (66), (67) and function ŵ2

ŵ2 = e�
2
x
cot(b)(cos(bx)� 1) + sin(bx)

2b
+ e�

2

bx� sin(bx)

2b sin2(b)
; b =

p
q0

into expressions (54) we find the coefficients of equation (53)

a1 = 1250:63981; a2 = 52054:6889:

In accordance with equation (53) in the first approximation we have

�1 = 1207:53146�; �2 = 43:1083501�: (70)

It follows from (70) that the double zero eigenvalue splits into two positive simple eigenvalues

(stability) only if the parameters change in the direction specified by the vector e
�
=(1;�23:7079804),

Tab. 3. Changing the parameters in the opposite direction results in the splitting of the double

�0 = 0 into two negative simple eigenvalues, which means static instability (divergence). Note

that the approximate expressions for the eigenvalues are in a good agreement with the solutions

of characteristic equation (43), Tab. 3.

One can see that the tangent cone to the stability domain at the singular point is a ray on the

plane of parameters. Stability domain in the vicinity of this point is a long narrow tongue, Fig.

1. Our technique allows to find the quadratic approximation of the flutter and divergence domains

and therefore the stability domain near the singular point.

It is easy to see, that equation (57) describing splitting of the double eigenvalue �0 = 0 along

smooth curves tangent to the flutter boundary at the point p = p0 can be rewritten as follows

�2 + hh;�pi�+ hH�p;�pi = hf2;�pi + o(jj�pjj2): (71)

Components of the real vector h and real symmetrical matrix H are determined by formulae (31)

and (32). Their evaluation at the singular point gives

h1 = �917:197355; h2 = 14:0645660;
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H11 = 0; H12 = �690:854898; H22 = 34:3323737: (72)

Equation (71) provided that � = 0 gives the quadratic approximation of the divergence boundary

near the singular point

f 1
2
(� � �0) + f 2

2
(q � q0) = 2H12(� � �0)(q � q0) +H22(q � q0)

2: (73)

The equality of the discriminant of equation (71) to zero guarantees the nonsplitting of the

double zero eigenvalue and therefore defines the approximation of the flutter boundary

f 1
2
(� � �0) + f 2

2
(q � q0) =

= (h1(� � �0) + h2(q � q0))
2=4� (2H12(� � �0)(q � q0) +H22(q � q0)

2): (74)

Substitution of the components of the normal vector f2 from (68), the vector h and matrix H

from (72) into equations (73), (74) gives the quadratic approximations of the flutter and divergence

domains in the vicinity of the point p0 = (0:35431330; 17:0695748). These approximations are

shown on Fig. 1. by the firm thin lines. One can see that the approximation of the divergence

domain is very good at the far distances from the singular point. The approximation of the flutter

domain is good in the neighborhood of the point p0 = (0:35431330; 17:0695748).

6. Sensitivity analysis and stability boundaries in the problem of Smith

and Herrmann

In the previous Section we have considered the problem of stability of a cantilevered column

loaded at its free end by the partially tangential follower force. T.E. Smith and G. Herrmann [23]

were the first who studied the stability of such column attached to the elastic translational Winkler

foundation [24] with the uniformmodulus �. The differential equation of in-plane transverse vibra-

tions of this column differs from its Beck’s analogue only in the term �y(x; �), where � = �L4

c
=EI .

The boundary conditions remain the same.

Thus, the eigenvalue problem for the Beck column on elastic foundation looks like

u0000 + qu00 + �u = �u; (75)

U1(u) � u(0) = 0; U3(u) � u00(1) = 0;

U2(u) � u0(0) = 0; U4(u) � u000(1) + (1� �)qu0(1) = 0:
(76)

The corresponding adjoint eigenvalue problem has the form

l�(v) � v0000 + qv00 + �v = �v; (77)
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V 1(v) � �v(0) = 0; V 3(v) � v00(1) + �qv(1) = 0;

V 2(v) � v0(0) = 0; V 4(v) � �v000(1)� qv0(1) = 0;
(78)

The forms V 5; : : : ; V 8 are determined by equations (42).

Let us consider a point p0 = (�0; �0; q0) in the space of parameters (�; �; q), where the spectrum

of eigenvalue problem (75), (76) has a real eigenvalue of multiplicity k with Keldysh chain of length

k. With the use of formulas (22), (42) and (75)–(78) we obtain the real vector fk

fk =

 R
1

0
u0v0dxR

1

0
u0vk�1dx

;
q0u

0

0
(1)v0(1)R

1

0
u0vk�1dx

;

R
1

0
u00
0
v0dx�(1��0)u00(1)v0(1)R

1

0
u0vk�1dx

!
: (79)

We know from Section 3 of the present paper thatZ
1

0

u0v0dx = 0

for the eigenfunctions at the multiple eigenvalue with the Keldysh chain of length k � 2. This

integral remains nonzero only if u0, v0 are the eigenfunctions of the simple eigenvalue.

Hence, the first component f 1
k
of the vector (79) is identically zero at any point p0, corre-

sponding to the multiple eigenvalue �0 with the Keldysh chain. It follows from formula (21) that

in such case �0 does not split in the first approximation due to variation of the modulus of elastic

foundation �

� = �0 +
k

q
f 2
k
�� + f 3

k
�q + o(jj�pjj1=k): (80)

The points p0 of the smooth parts of the flutter boundary of dimension 2 correspond to the

operators L with double real eigenvalues with the Keldysh chain of length 2. From (80) it follows

that the tangent plane to the flutter boundary at such points is described by the equation

f 2
k
�� + f 3

k
�q = 0

and thus is always parallel to the axis �. This is the necessary condition of independence of the

flutter boundary of the elastic foundation modulus. We showed that this condition is automatically

satisfied in the problem of Smith and Herrmann [23].

Recall that the authors of paper [23] came to the striking conclusion that the flutter boundary

doesn’t depend on the modulus of the uniform elastic foundation, analyzing the characteristic

equation

�(�; q; �� �) = 0; (81)
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� � (2(�� �) + (1� �)q2)(1 + cosh(a) cos(b)) + q(2� � 1)(q + ab sinh(a) sin(b));

where

a =

s
�q

2
+

r
q2

4
+ �� �; b =

s
q

2
+

r
q2

4
+ �� �;

q2

4
+ �� � 6= 0: (82)

Indeed, at given values of the parameters � = �0, q = q0 and real � the characteristic determi-

nant is a smooth function: � = �(���). It is clear that the zeros of the shifted function�(���)

differ from the zeros of the function�(�) on the amount of � but their multiplicities are invariable.

This means that if the point (0; �0; q0) is a point of the flutter boundary then the point (�; �0; q0)

also belongs to this boundary for any �.

On the contrary, the simple eigenvalue �0 = 0 becomes simple nonzero after the shift: � = �.

This means that the divergence boundary should change due to variation of the elastic foundation

modulus �. This conclusion does not contradict to the sensitivity analysis because the eigenfunc-

tions of the simple zero eigenvalue are not orthogonal and thereby the first component of the vector

f1, normal to the boundary between stability and divergence domains, is not zero.

Traveling of the divergence domain. Let us find the divergence domain in the Smith-

Herrmann problem. Substituting � = 0 into characteristic equation (81) and expressions (82)

we obtain

�(q; �)=
r2q�r1(q2�2�)

2r2q�r1q2
; r1=1+cosh(a) cos(b); r2=q+ab sinh(a) sin(b): (83)

At � = 0 the function �(q) coincides with (44) and has its maximum �
�
= 0:5 at the values of

the load parameter

q
�
= �2; (3�)2; : : : ; (2j � 1)2�2; : : :

At the points

q
��

= 0; (2�)2; (4�)2; : : : ; (2j)2�2; : : :

the value of the function �(q) tends to�1 [17].

At any given � > 0 and q > 0 the function �(q) defined by (83) represents a smooth curve of

zero eigenvalues on the plane of the parameters � and q. In that case the maximum value of �
�

and the corresponding value of the parameter q
�
will change due to variation of the parameter �.

It is interesting to find a trajectory of the point (�
�
; q
�
), say of the first maximum, on the plane of

parameters �, q due to change of the parameter �. Solving numerically at different values of � the
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Figure 5: Changing of the point p
�
=(�

�
; q
�
) due to variation of the parameter �.

equation d�=dq = 0 we can get the function q
�
(�). Substituting this function into (83) we obtain

the function �
�
(�). Knowledge of these two functions allows us to find the curve �

�
(q
�
), Fig. 5.

At � = 0 we have p
�
=(0:5; 9:86960440). This is the point of divergence domain with the

vertical tangent studied in Section 4. With the increase of � this point moves up and to the left

until the values of �
�
= 0:32112653 and q

�
= 19:4220703, corresponding to �

�
= 46:4046486. We

see that the divergence domain extended to �
�
= 0:5 at � = 0 contracts with the increase of � to

�
�
= 0:32112653. Further increase of �moves the point (�

�
; q
�
) up and to the right expanding the

divergence domain until � = 0:5, then up and to the left contracting the divergence domain, and

so on, Fig. 5.

Recall that the flutter domain as it was discussed earlier doesn’t change with the increase of

the parameter �. Nevertheless double eigenvalues at the points of the flutter boundary change

as �=�. Consider the point p0 = (0:35431330; 17:0695748) on the flutter boundary where there

exists a double zero eigenvalue at �=0, see Section 5 or [17]. With the increase of � the double

eigenvalue at p0 becomes positive, i.e. this point becomes a regular point of the stability–flutter

boundary. The singularity 02 moves out from p0. Indeed, the points on the flutter boundary sit-

uated after p0 correspond at �=0 to the double negative eigenvalues. Since �=� any of such

negative eigenvalues becomes double zero at some � > 0. So, at �
�
=46:4046486 the double zero

eigenvalue appears at the point (0.32112653, 19.4220703), studied in Section 5. At this point the

flutter boundary has the vertical tangent. Therefore, with the increase of the modulus of the elastic

foundation flutter boundary remains invariable while the double eigenvalues at its points change

linearly with respect to �. This has as a consequence the motion of the double zero eigenvalue

along the flutter boundary. Since the curve of zero eigenvalues and the flutter boundary are tan-

gent at the point 02 [17], we can conclude that with a change of � the curve of zero eigenvalues

travel up on the plane of parameters �, q, being always tangent to the flutter boundary. The full
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Figure 6: The travel of the divergence domain due to increase of the modulus �.
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dynamics of the divergence boundary and the curves of zero eigenvalues is shown on Fig. 6 for

� 2 [0; 15000].

On Fig. 6 stability diagrams for � 2 [0; 1] and q 2 [0; 150] are shown. One can see that in

this range of parameters there are two invariable curves of double eigenvalues. The lower curve

corresponds to the coincidence of the first two eigenvalues while the upper one corresponds to the

collision of the third and the fourth eigenvalues. There are also two curves of zero eigenvalues for

the figures corresponding to � < 3000. At the points of the lower curve the two first eigenvalues

change its sign while at the points of the upper curve – the third and the fourth eigenvalue. In

this sense upper and lower curves are situated at the different levels. The lower curve of zero

eigenvalues is always tangent to the lower curve of double eigenvalues but can intersect the upper

curve of double eigenvalues (for example at � = 4000 and � = 5000). And so does the upper curve

of zero eigenvalues (for example at � = 0).

With the increase of � the curves of zero eigenvalues and the divergence domain together with

them travel up clearing the place for the stability. At � > 3000 only the lowest curve of zero

eigenvalues remains in the range � 2 [0; 1] and q 2 [0; 150]. At �=15000 the divergence is almost

swept out of this range and we have on its former place a great stability domain, Fig. 6.

The idea to consider the change of stability diagram on the plane of parameters �, q due to

variation of modulus � seems to appear first in the work [26]. The authors of [26] noted the chang-

ing of the divergence boundary but overpassed the phenomenon of the traveling of the divergence

domain along the flutter boundary and the possibility to considerably enlarge the stability domain.

In the work [17] the stability diagram at � = 0 was found, but the part of the flutter boundary cor-

responding to the negative double eigenvalues was not shown ”since it does not correspond to any

physical interpretation” [17]. As one can see from Fig. 6, the introduction of another parameters

(�) considerably changes the problem and gives a physical meaning to the ”bad” part of the flutter

boundary.

Sensitivity of the flutter load to the imperfections of the elastic foundation. Consider a

point p0 = (�0; �0; q0) on the flutter boundary corresponding to the double real eigenvalue �0 with

the Keldysh chain of length 2. The critical flutter load q0 in the problem of Smith–Herrmann does

not depend on the modulus � of the uniform elastic foundation. Let us study the sensitivity of this

load to small imperfections of the foundation.
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Namely, we consider the variation Æ�(x) of the modulus �

�(x) = �0 + �e�(x) + o(�); (84)

where � � 0 is a small parameter and �e�(x) = Æ�(x). Varying the parameters � and q in the usual

form

� = �0 + �e� + o(�); q = q0 + �eq + o(�);

substituting them as well as variation (84) into eigenvalue problem (75), (76) and taking into

account expansions (9) and (16) we get two boundary value problems for determining the first

coefficients of expansions (16)

w0000

1
+ q0w

00

1
+ �0w1 = �0w1 + �1u0;

w1(0) = w0

1
(0) = w00

1
(1) = w000

1
(1) + (1� �0)q0w

000

1
(1) = 0; (85)

w0000

2
+ q0w

00

2
+ �0w2 = �0w2 + �1w1 + �2u0 � equ00

0
� e�(x)u0; (86)

w2(0)=w
0

2
(0)=w00

2
(1)=w000

2
(1)+(1� �0)q0w

000

2
(1)+[eq(1� �0)�e�q0]u00(1)=0:

Taking the scalar product of equation (86) with the eigenfunction v0 and substituting in the ob-

tained product the solutionw1 of equation (85) we get the approximate formula describing splitting

of the double eigenvalue �0

�=�0 �

s
(Æ�(x)u0; v0)

(u0; v1)
+
q0u

0

0
(1)v0(1)

(u0; v1)
��+

[(u00
0
; v0)�(1��0)u00(1)v0(1)]

(u0; v1)
�q; (87)

where �� = � � �0 and �q = q � q0. The double eigenvalue does not split in the first approx-

imation due to change of parameters if the radicand in (87) is zero. Thus, if we wish to change

the parameters � and � to obtain the critical flutter load different from q0 we should impose the

nonsplitting condition on their variations

�q = � (Æ�(x)u0; v0)

(u00
0
; v0)�(1��0)u00(1)v0(1)

� q0u
0

0
(1)v0(1)

(u00
0
; v0)�(1��0)u00(1)v0(1)

��: (88)

Formula (88) clearly shows that the critical flutter load is sensitive to changes in the parameter

� as well as in parameter � if this parameter is distributed. If Æ� = const:, then
R
1

0
Æ�u0v0dx =

Æ�
R
1

0
u0v0dx = 0 and the flutter load does not depend on the modulus of the elastic foundation.
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Figure 7: Gradient function g(x) of the critical flutter load w.r.t. the elastic foundation modulus

distribution �(x).

Suppose that the parameter � = �0 is fixed. Introducing the gradient function

g(x) =
�u0(x)v0(x)R

1

0
u00
0
v0dx�(1��0)u00(1)v0(1)

(89)

we can write

�q =

Z
1

0

g(x)Æ�(x)dx: (90)

Consider, for example, the Beck point (�0 = 0; �0 = 1; q0 = 20:0509536). Substituting into

(89) the eigenfunctions (46), (47) evaluated at that point we get the gradient of the critical flutter

load q0 with respect to the distributed elastic foundation modulus �(x), Fig. 7.

One can see from Fig. 7 that the tip of the Beck column is very sensitive to the presence of

the elastic foundation. That fact is in accordance with the result of the work [18] where the high

influence of the end spring stiffness on the flutter load of the Beck column was shown.

Let us take a variation of � in the gradient direction: Æ�(x) = g(x). Substituting Æ�(x) into

(90) we get

q = q0 + 

Z
1

0

g2(x)dx = q0 + 0:00708579:

The obtained formula shows that the breakdown of the uniformity of the elastic foundation can

increase ( > 0) or decrease ( < 0) the critical flutter load. That fact, firstly observed in the work

[25], stimulated the investigation of different types of distributed elastic foundations, for example

partial elastic foundation [27]. It seems that the choice of the model of elastic foundation, among

which the translational Winkler foundation is the simplest one [24], is the key to the paradox of

Smith-Herrmann.
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Note on a parasite solutions of characteristic equation (81). Consider the relationship

� = �� q2

4
: (91)

Such defined � are the roots of characteristic equation (81). Indeed, taking into account (91) we

can transform (81) into

q2

2
(1� 2�)

�
cos2

�r
q

2

�
+ sin2

�r
q

2

�
� 1

�
� 0:

Consequently, equation � = q2=4 gives a curve of zero eigenvalues on the parameter plane (�; q)

and can be the boundary between stability and divergence domains.

Let us show that for q � 0 the eigenfunctions at the eigenvalues � defined by (91) are u(x) � 0

and therefore these solutions have no influence on the stability of the column. Substitution of (91)

into expressions (82) gives

b = �ia =

r
q

2
:

In this case the general solution of equation (75) has the form

u(x) = C1 cos

�
x

r
q

2

�
+ C2 sin

�r
q

2

�
+ C3x cos

�
x

r
q

2

�
+ C4x sin

�
x

r
q

2

�
:

Substituting this general solution into boundary conditions (76) we get the system of linear equa-

tions on the coefficients Ci, i = 1 : : : 4. This system has a nontrivial solution if and only if its

determinant

�(�; q) =
q2

8

�
(2� � 1)

�
q + 2 sin2

�r
q

2

��
+ 4 + 4 cos2

�r
q

2

��
(92)

is equal to zero.

From (92) one can see that for � � 0:5 the equation �(q) = 0 has no solutions q > 0, i.e. all

the coefficients Ci = 0 and u(x) � 0. The only root is q = 0. But in this case the general solution

has another form

u(x) = C1 + C2x + C3x
2 + C4x

3:

Substituting it into the boundary conditions (76) it is easy to determine that u(x) � 0. The case

q > 0, � < 0:5 needs further investigation.
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7. Stability of a panel at high supersonic speeds

As another example we consider a simply-supported panel of the uniform thickness h, length

a1 and width a2 with air flowing above at supersonic Mach numberM . The panel has a density �

and stiffness D = Eh3=12(1� �2), where E is the Young modulus and � is the Poisson number.

The speed of sound in an undisturbed gas medium of density �0 is designated by c0. The panel

is subjected to constant midplane force intensities N1 and N2 (positive in compression). This

problem was considered first in 1950-s [28, 29, 30] and still remains important [31], [32].

Introducing the non-dimensional variables: k = a1=a2, deflection z, coordinates x, y, time

�=t=
p
�ha4

1
=D, dynamical pressure p and forces q, r

z =
Z

a1
; x =

X

a1
; y =

Y

a2
; p =

�0c0M
2a3

1

D
p
M2 � 1

; q =
N1a

2

1

D
; r =

N2a
2

1

D
;

we get the differential equation of small vibrations of the panel [29, 30]

@4z

@x4
+ 2k2

@4z

@x2@y2
+ k4

@4z

@y4
+ q

@2z

@x2
+ rk2

@2z

@y2
+ p

@z

@x
+
@2z

@� 2
= 0 (93)

with the boundary conditions

z(0; y; �) = zxx(0; y; �) = z(1; y; �) = zxx(1; y; �) = 0

z(x; 0; �) = zyy(x; 0; �) = z(x; 1; �) = zyy(x; 1; �) = 0:
(94)

We seek the solution of (93) in the form

z(x; y; �) = u(x) sin(n�y) exp
�
i
p
��
�
: (95)

Substituting (95) into equation (93) and boundary conditions (94) we come to the eigenvalue

problem, see [29]

u0000 +
�
q � 2n2�2k2

�
u00 + pu0 +

�
n4�4k4 � n2�2k2r

�
u = �u

u(0) = 0; u00(0) = 0; u(1) = 0; u00(1) = 0: (96)

Consider first the panel of infinite span (k ! 0). In this particular case equations (96) take a

simpler form and the eigenvalue problem looks like

l(u) = u0000 + qu00 + pu0 = �u; (97)

U1(u) � u(0) = 0; U2(u) � u00(0) = 0;

U3(u) � u(1) = 0; U4(u) � u00(1) = 0:
(98)
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For the problem adjoint to (97), (98) we have

l�(v) = v0000 + qv00 � pv0 = �v; (99)

V 1(v) � v(0) = 0; V 2(v) � v00(0) = 0;

V 3(v) � v(1) = 0; V 4(v) � v00(1) = 0:
(100)

Eigenfunction v(x) of adjoint eigenvalue problem (99), (100) can be expressed through the eigen-

function u(x) of eigenvalue problem (97), (98)

v(x) = u(1� x);

where  is a nonzero constant.

A general solution of equation (97) is a linear combination of exponents esx. Substituting esx

into (97) we get the polynomial equation on s

P (s) � s4 + qs2 + ps� � = 0: (101)

The roots of the polynomial P (s) satisfy the following conditions:

s1 + s2 + s3 + s4 = 0; s1s2 + s3s4 + (s1 + s2)(s3 + s4) = q;

s1s2(s3 + s4) + (s1 + s2)s3s4 = �p; s1s2s3s4 = ��: (102)

We will further consider only nonnegative values of the parameter q. To find the boundaries of

flutter and divergence domains it is sufficient to know only real eigenvalues �.

If q > 0 and � > 0, then two roots s1, s2 of (101) are real and two others form a complex-

conjugate pair: s3;4 = a� ib. It follows from (102) that the roots s1, s2 and the parameters p, q can

be expressed through a, b and �

s1;2 = �a� A; A =

r
a2 +

�

a2 + b2
;

p = 2a(b2 + A2); q = b2 � 2a2 � A2: (103)

It is clear that the general solution taken in the form

u(x) = C1e
�ax sinh(Ax)� C2e

�ax cosh(Ax) + C2e
ax cos(bx) + C3e

ax sin(bx) (104)
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satisfies the first of boundary conditions (98). Substituting it in the remaining boundary conditions

we obtain the system of three linear equations with respect to the variablesC1,C2,C3. This system

has a nontrivial solution iff the determinant � of the system matrix is equal to zero:

�(a; p; q) = 0; (105)

��((A2+b2)2+4a2(b2�A2)) sinh(A) sin(b)�8Aa2b(cosh(A) cos(b)� cosh(2a));

where

b =

r
p

4a
+
q

2
+ a2; A =

r
p

4a
� q

2
� a2: (106)

Equations (105) and (106) give a as a function of the parameters p and q. Substituting a(p; q) into

the equation

� =
p2

16a2
�
�
2a2 +

q

2

�
2

(107)

we get the eigenvalue �(p; q), see [29]. Relationships (106) along with equation (107) are the

consequence of equations (103).

To find the flutter boundary numerically we should change one of the parameters p or q while

remaining parameter is fixed until two real eigenvalues collide with origination of a double real

eigenvalue. The equation describing the divergence boundary [30] follows from (105), if we put

A = a in it

((a2 + b2)2 + 4a2(b2 � a2)) sinh(a) sin(b)� 8a3b(cosh(a) cos(b)� cosh(2a)) = 0;

a=qG�1=3� 1

12
G1=3; b=

p
3

�
a+

1

6
G1=3

�
; G=�108p+12

p
12q3+81p2: (108)

The results of numerical analysis are presented on Fig. 8. One can see that the plane of

parameters p and q is subdivided into stability (S), flutter (F) and divergence (D) domains, which

are symmetric with respect to the vertical axis. This is the consequence of the symmetric boundary

conditions (98).

The boundary of the stability domain is nonsmooth and has two singular points 02. To obtain

the exact coordinates of these points we need to move along the curve (108), the part of which de-

scribes the boundary between stability and divergence domains, until the integral
R
1

0
u0(x)v0(x)dx

calculated at the points of this boundary becomes zero. The eigenfunctions of eigenvalue problems

(97)–(100), corresponding to the double eigenvalue � = 0, have the form

u0(x)=K1e
ax sin bx�K2e

�ax sinh(ax)+eax cos(bx)�e�ax cosh(ax);
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Figure 8: Stability Diagram.

v0(x)=u0(1� x); (109)

where the coefficientsK1 andK2 are as follows

K1 =
(a2 + b2) sinh(a)e�a + 2a2(cosh(a)e�a � cos(b)ea)

2a(b sinh(a)e�a + a sin(b)ea)
;

K2 =
(a2 + b2) sin(b)ea�2ab(cosh(a)e�a � cos(b)ea)

2a(b sinh(a)e�a + a sin(b)ea)
: (110)

Evaluating the scalar product of eigenfunctions (109), (110) we obtain the coordinates of the sin-

gular points

(p0 = �90:1406979; q0 = 34:3998023):

These coordinates are in agreement with the coordinates (p0 = �88; q0 = 34) found in the book

[30] with the use of the Galerkin method.

The stability diagram also shows the nonsmoothness of the flutter boundary. It has singulari-

ties �� [22] at p = 0. These singularities correspond to the semisimple double real eigenvalues �

with the two eigenfunctions. Note that in the absence of the flow (p = 0) eigenvalue problem (97),

(98) is selfadjoint and its spectrum is free from the multiple eigenvalues with the Keldysh chains

of length k � 2.

Double semisimple eigenvalues were investigated in the work [4]. It was shown that the cor-

responding singularity is a cone in the space of three parameters. On the plane of two parameters

we have only the sections of the cone which in generic case are hyperbolae, parabolae and ellipses.

Two intersecting lines in the section of the cone appear in non-generic situations. In our prob-

lem the non-genericity is caused by the symmetric boundary conditions. It is interesting to break

down the symmetry considering another boundary conditions for the plate in the supersonic flow.
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8. Conclusion

This work has presented an approach allowing to obtain explicit formulae for the bifurcation

of multiple eigenvalues of non-selfadjoint differential operators smoothly dependent on a vector

of real parameters. The formulae found use the derivatives of the differential expression and the

boundary forms with respect to parameters as well as the functions of the Keldysh chain evaluated

at the point of the parameter space corresponding to a multiple eigenvalue. It is shown with their

use that the ”flutter condition” for the pure circulatory systems is a simple consequence of the

existence of the Keldysh chain of length k � 2.

The results obtained let us to study the splitting of the multiple eigenvalues both in regular and

degenerate cases and serve as a basis for the sensitivity analysis of continuous non-conservative

systems, allowing to avoid the variational calculus in every particular problem to find sensitivities

of eigenvalues or critical values of parameters.

The advantages of the proposed approach are illustrated by the mechanical examples, includ-

ing the extended Beck problem, the paradox of Smith-Herrmann, and the problem of stability of

a plate in supersonic flow. With the use of the bifurcation analysis of eigenvalues stability bound-

aries of these problems are investigated. The singularities of different types are found and linear

and quadratic approximations to the stability and instability domains both at regular and singular

points of their boundaries are constructed.

In the problem of Smith-Herrmann the phenomenon of traveling of the divergence domain due

to change of the elastic foundation modulus is found and discussed in detail.
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