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Abstract Asymptotic stability is examined for a linear potential t®m perturbed
by small gyroscopic, dissipative, and non-conservativeds as well as for a cir-
culatory system with small velocity-dependent forces andafgyroscopic system
with small dissipative and circulatory forces. Typicalgifarities of the stability
boundary are revealed that govern stabilization and didigition and cause the
imperfect merging of modes. Sensitivity analysis of théical parameters is per-
formed with the use of the perturbation theory for eigensaland eigenvectors of
non-self-adjoint operators. In case of two degrees of fitegtability boundary is
found in terms of the invariants of matrices of the systerfuiBation of the stabil-
ity domain due to change of the structure of the damping matrilescribed. As a
mechanical example, the onset of stabilization and dd&tation in the models of
gyropendulums and of rotating continua in frictional caniia investigated

1 Introduction

We consider a non-conservative system depending on thrampéers?, 4, andv

X+ (QG+0D)x+ (K+VN)x=0 (@)
with the real matricek = KT, D =D', G = —G", andN = —NT of potential,
dissipative, gyroscopic, and non-conservative positi@cieculatory) forces, where
dot stands for the time differentiation ard: R™. A circulatory system

X+ (K+VN)x=0 (2)

as well as gyyroscopicone
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X+ QGx+Kx =0. (3)
possess symmetries that are evident after transformaitidn) to y = Ay with

1
-50G I X
= 2 —
A6, Q.v) [%(SQDG+%QZGZ—K—VN —50—%96] Y [x+%gex} ’
wherel is the identity. The matriA (0,0, v) has areversiblesymmetryRAR = —A
[8], while A(0,Q,0) possesses thgamiltoniansymmetryJAJ = AT [13], where

R:Rlz[g_ol}, J:—le[_ol (')} (4)

In both cases déA — Al) = det{A + Al), which implies marginal stability if all the
eigenvalues are purely imaginary and semi-simple.

In the presence of all the four forces, the symmetries arkdorand the marginal
stability is generally destroyed. Instead, system (1) cam$ymptotically stable.
Modern applications in rotor dynamics, hydrodynamicsbititg and optimiza-
tion of structures, and acoustics of friction frequentlgdeo the linearized equa-
tions of motion (1) withd, Q < v (near-reversible systemwith 4,v <« Q (near-
Hamiltonian systen or with 6, Q, v <« 1 (near-potential systejn

Historically, Thomson and Tait in 1879 were the first who fduahat dissipation
destroys the gyroscopic stabilizatiadigsipation-induced instabili}y13]. A simi-
lar effect of non-conservative positional forces on théeitits of gyroscopic systems
has been established by Lakhadanov [3]. A more sophisticasmifestation of the
dissipation-induced instabilities has been discoveredibgler on the example of
a double pendulum loaded by a follower force with the dampian-uniformly
distributed among the natural modes [1]. Without dissgratthe Ziegler pendulum
is a reversible system, which is marginally stable for thelbnon-exceeding some
critical value. Small dissipation of ordef1) makes the pendulum either unstable or
asymptotically stable with the critical load, which gemwatly is lower than that of
the undamped system by the quantity of or@ét) (the destabilization paradgx
Similar discontinuous change in the stability domain foamklamiltonian systems
has been observed by Holopainen [2, 13] in his study of thexeéf dissipation on
the stability of baroclinic waves in Earth’s atmosphereHmnyeijn and Ruijgrok on
the example of a rotating shaft on an elastic foundationd6§ by Crandall, who
investigated a gyroscopic pendulum with stationary anatitog damping [7].

As it was understood during the last decade, the reason éodeistabilization
paradox in multiparameter near-reversible and near-Hanién systems is multi-
ple eigenvalues related to the singularities of the stghbiloundary. Hoveijn and
Ruijgrok were the first who associated the discontinuousgéan the critical load
in their example to the Whitney umbrella singularity [6].el'same singularity has
been identified on the stability boundary of the Ziegler pduach [11], of the mod-
els of disc brakes [16, 19], of the rods loaded by followerc&[12], and of the
gyropendulums and spinning tops [14, 18]. These exampllest¢he general fact
that the codimension-1 Hamiltonian (or reversible) Hopéitation can be viewed
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as a singular limit of the codimension-3 dissipative reswrda 1 normal form and
the essential singularity in which these two cases meep@agically equivalent to
Whitney’s umbrella [10, 13].

Despite the achieved qualitative understanding, the growumber of applica-
tions demonstrating the destabilization paradox [9, 16,173 21] as well as the
need for a justification for the use of Hamiltonian or reviglissimodels to describe
real-world systems that are in fact only near-Hamiltoniamear-reversible, requires
the development of new analytical tools for a unified treatheé this phenomenon.

In the present paper we propose an efficient sensitivityyaisafor calculation
of the stability boundaries and for evaluation of criticalpmeters of system (1) in
near-reversible, near-Hamiltonian, and near-potensisés.

2 A circulatory system with small velocity-dependent force

We begin with the near-reversible cage Q@ < v).

Proposition 1. If trK > 0 and detK < 0, circulatory system (2) with two degrees
of freedom is stable fovg® < v? < v¢2, unstable by divergence for* < v42, and
unstable by flutter for? > v¢2, where the critical valuesy andv; are

0<V—detK =: vg < vs 1= 4/(trK/2)2 — detK. (5)

If trk > 0 anddetk > 0, the circulatory system is stable fof < v¢? and unstable
by flutter forv2 > v¢2. If trK < 0, the system is unstable.

At the flutter boundary = v; there exist a double eigenvaliwe; with the right
and left Jordan chaing, u; andvyg, v1

(—w?l +K +viN)ug = 0, (—w?l +K 4 v¢N)uy = —2icws o,

Vo (—aw?l +K 4+ viN) =0, V] (—w?l +K +VviN) = —2iawyv], (6)
wherew; = /trK /2 form= 2. Forv > v; the flutter instability is caused by two of
the four complex eigenvalues lying on the branches of a tgiercurve Ini? —
ReA2 = w?, see Fig. 1. In the vicinity of = v; we have [11]

A(V)=liws = p\/V—Vi+..., u(v)=up=tUUi/V—Vi+...
V(V) = Vo uvi/V—Vi+..., @)

whereu? = —viNug(2iwrviuy)1is real. Fom= 2 we haveu? = vi /2w? > 0.
System (1) withm= 2 and deG = detN = 1 is asymptotically stable iff [14]

5trD > 0, trK + 5%detD + Q% > 0, detk +v2>0, — (v —vg)(Vv—vd) >0, (8)

wherevi (6,Q) =a }(Qb+vQ2b2+ac) J, B, = (2vs) tr(KD — w?D), and
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Fig. 1 Stability diagrams and trajectories of eigenvalues foiiticeeasing parameter > 0 for the
circulatory system (2) with & > 0 and deK < 0 (a) and tK > 0 and deK > 0 (b).

a(3,Q) = 4Q%+ 5%(trD)?, b(3,Q) = 4v B, + (5°detD + Q2)trD,
c(8,Q) = vZ((trD)? — 4B2) + (w?trD — 2v¢ B.) (6% detD + Q?)trD. (9)

Calculatingvy™ (B) = lims_ov& (8, ) and then isolating yields a linear ap-
proximation to the stability boundary in the vicinity of tiveaxis

trD v2
B*i7,/1—v—f215. (10)

According to (10) the configuration of the domain of asymiptetability depends
on the structure of the matr. Due to the identity

(UD)? _  yeip . (Ka2(do2—du1) — dia(kor — kin))?
4 4v?

Vi
Q=—
Y

[

(11)

the set of indefinite damping matrices is subdivided into tlesses.

Definition 1. We call a 2x 2 real symmetric matrif with detD < 0 weakly indef-
inite, if 482 < (trD)?, andstrongly indefiniteif 432 > (trD)>.

ForK > 0 and a positive (semi)definite or a weakly-indefinite mairithe addi-
tion of small velocity-dependent forces blows the stapiliterval of a circulatory
systemv? < vf2 up to a three-dimensional region bounded by the parts ofgusin
lar surfacev = v (8, Q), which belong to the half-spadirD > 0, Fig. 2(a). The
interval v2 < vf2 forms an edge of a dihedral angle. At= 0 the angle reaches
its maximum(7r), creating another edge along tiieaxis. While approaching the
points+vs¢, the angle becomes more acute. Leaving only the second tches
and then substitutin§ = Q /0 in the expansions following from (10)

Vi F Vg (B) = 2v¢ (trD) 2(BF B.)%+o((BF B.)?), (12)

we get equations of the for@ = X?/Y?, which is canonical for the Whitney um-
brella surface [6, 10]. The extension to arbitramys provided by the statement.
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Fig. 2 The domain of asymptotic stability of the two-dimensiongdtem (1) with the singularities
Whitney umbrelladihedral angle trihedral angle andbreak of an edgevhenK > 0 and 482 <
(trD)? (a),K > 0 and 482 > (trD)? (b), and when # > 0 and deK < 0 (c).

Theorem 1.Let the system (2) with m degrees of freedom be stable farv.
Define the real quantitieB. = —v{ Dug(v{ Gup)~* and

d; = Re(vDup), dp = Im(v{Duy +v{Dup),
01 = ReV{Gup), g2 = Im(vGui+ V] Guy). (13)

Then, in the vicinity of := Q/d = B. the limit of the critical flutter load/;; of the
near-reversible system (1) with m degrees of freedodh-as0 is

2@ \2
v (B) = vi - % Lo((B—B.)?) < wi. (14)

Proof. Perturbing a simple eigenvali@(v) of the stable system (2) at a fixed<
v¢ by small dissipative and gyroscopic forces yields the imzet

viDu_ Vv'Gu

A=iw———0— ——
! 2vTu 2vTu

Q+0(5,Q). (15)
Substituting expansions (7) into (15) and equating thefieslorder increment to
zero yields expression (14) fo8 — B.| < 1, which form= 2 is reduced to (12).
O

WhenD approaches the threshol@%= (trD)?, two smooth parts of the stability
boundary come towards each other until they touch, wibdr at the threshold.
After D becomes strongly indefinite this temporary configuratidiapses into two
pockets of asymptotic stability, as shown in Fig. 2(b). Eattie two pockets has a
Whitney umbrella as well as two edges which meet at the oagihform the “break
of an edge” singularity. In case of an indefinite matkixthe conditionv? > vg
divides the domain of asymptotic stability into two partgg.R2(c). Qualitatively,
this configuration does not depend on the properties of thexuia

Note that the paramete34 — (trD)? obtained from the local perturbation anal-
ysis governs the global bifurcation of the whole stabilinthin, which is seen at
v = 0 when the stability domain is described by the inequaljty, Q) > 0, Fig. 3.
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Fig. 3 Bifurcation of the domain of the asymptotic stability (wéjitin the plangd, Q) atv =0
with the change of the matr@ from the positive definite or weakly indefinite to stronglyéfinite.

Inequalities (8) describe the stability domaimof 2-dimensional near-potential
system, shown in Fig. 2(a,b). In case of arbitrargpproximation to the domain is
captured by the first- and second-order terms in the Tayleséor simple eigen-
values [5] of the matriXX perturbed by the gyroscopic, dissipative and circulatory
forces. The case whef has repeated eigenvalues will be considered in Section 4.

3 A gyroscopic system with weak damping and circulatory fores

Stability of a two-dimensional gyroscopic system (3) in #irsence of dissipative
and circulatory forcesd = v = 0) is given by the following statement.

Proposition 2. If detK > 0 andtrK < 0, gyroscopic system (3) with two degrees
of freedom is unstable by divergence ff < ng, unstable by flutter fof)o’2 <
Q2 < Qf? and stable fo2; > < Q2, where the critical value®, andQ; are

0<\/—trK —2VdetK =: Qy < Qf 1=/ —trK +2VdetK. (16)

If detk > 0 andtrK > 0, the gyroscopic system is stable for &y
If detk < 0, the system is unstable.

For K < 0 the statically unstable potential system can be stabilimethe gy-
roscopic forces. With the increase @f the complex eigenvalues move along the
circle Re\2+1mA2 = @ = VdetK until at Q% = Qo+2 they reach the imaginary
axis and originate double eigenvaluesay, Fig. 4. The onset of the gyroscopic
stabilizationQ¢ (9, v) of the near-Hamiltonian system deviates frarg [18].

Theorem 2.Let the system (3) with even number m of degrees of freedoyrdre g
scopically stabilized fof2 > Qg and let atQ = Q its spectrum contain a double
eigenvaluedy with the Jordan chaimig, uz, satisfying the equations

(—lwf +imQy G+K)up = 0,
(1w +ianQy G +K)up = —(2ianl + Q4 G)uo. 17)



Gyroscopic and circulatory systems prone to dissipatimuéed instabilities 7

Stabilty
Flutter
0 Divergence

Flutter

. 2
-Q; symptotic
stability

Stability

Fig. 4 The gyroscopic system witkh < O: trajectories of the eigenvalues for the increasing pa-
rameterQ > 0 (left), stability diagram (middle), the domain of asymitcstability of the near-
hamiltonian system with the Whitney umbrella singulast{gght).

Define the real quantitieg. = —iwyd Dup(TUd Nug)~* and d, dp, ny, np as

dy = Re(U§DUp), dp = Im(Ti§ Du; — U] Dup),
n = Im(U§Nug), N, = Re(tjNuy — U1 Nug), (18)
where the bar over a symbol denotes complex conjugate. Tinéne vicinity of

y:=v/d =y, the limit of the critical value of the gyroscopic paramet2}; of the
near-Hamiltonian system as— 0 is

n(y—y)?
p2(andz — yunz — dy)

Qe () = Qg + 5 +o((y—¥)%) > Qg . (19)
With y = v/d expression (19) gives an approximation to the stabilityrutzuy
of the near-Hamiltonian system in the vicinity of the Whignembrella singularity,
Fig. 4. In case om= 2 degrees of freedom the estimate (19) is reduced to
+Q4(y) =+Q5 £Qf

(TZ;D)Z(VJF V)2 +o((yF v.)?) (20)

with y, = (2Q4 ) ~tr[KD + (QJZ — w@)D], see e.g. [14, 18]. Fdf > 0 the domain
of asimptotic stability has a shape of the twisted dihedngle, Fig. 2(a,b).

An instructive illustration to the general analysis is th@din of asymptotic
stability of the modified Maxwell-Bloch equations that ane normal form for ro-
tationally symmetric, planar dynamical systems [13] anstdibe, in particular, sta-
bility of the vertical equilibrium of the Hauger gyropendut [4, 20]. The equations
follow from (1) form=2,D =1, andK = kI, and can be written as

X4+ 1QX~+ OX+ivX+ KX=0, X= X3 —iXa. (22)

According to (8) the solutior= 0 of (21) is asymptotically stable if and onlydf>
0andQ >v/d—(d/v)k. Fork > 0 the stability domain is a twisted dihedral angle
causing gyroscopic destabilization, Fig. 5(a). kot 0 the domain of asymptotic
stability collapses into two disjoint parts that are poskafttwo Whitney umbrellas
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Fig. 5 Two configurations of the asymptotic stability domain of thedified Maxwell-Bloch equa-
tions fork > 0 (a) andk < 0 (b) corresponding tgyroscopic destabilizatioandgyroscopic sta-
bilization respectively; Hauger's gyropendulum (c).

singled out by inequality > 0. Consequenctly, the system unstabl®at 0 can
become asymptotically stable at gredsras shown in Fig. 5(b) by the dashed line.

4 Subcritical flutter of rotating continua in fricitonal con tact

Equations (1) withQ = 2Q andK = (p% - £~22)I describe a two-mode approxima-
tion of the models of rotating continua in frictional contft5, 19]. In the absence
of dissipative and non-conservative positional forceseigenvalueﬁi ip+iQ,
A= —ip+iQ ofthe operatok o(Q Q) =1A24+21 QG+ (p? QZ)I forma spectral
mesh19] in the pIane(Q ImA). Two nodes of the mesh &= Qo =0 correspond
to the double semi-simple agenvalu’e& +ip.

Consider a perturbatidng (Q )4+AL(Q), assuming thafL (Q) = SAD+ VN ~
€. For smallQ ande = ||AL (0)|| the perturbed eigenvaliig is [20]

Re/\:—“lj;“zéi\/'q—;Ra:, |m/\=pi,/|c|_%m, 22)

wherep; andu, are the eigenvalues &f, and

I AN 7@
Rec_< 7 >5 Q+4p2’ Imc= R (23)

According to (22) independently on the structure of the mdi, the primary
role of dissipation is the creation of the bubble of insi@pilt is submerged below
the surface R& = 0 in the spacé€Q,ImA ReA) in case of full dissipation Fig. 6(a)
and partially lies in the domain Re> 0 when damping is indefinite Fig. 6(b). In
contrast to the effect of indefinite damping, the non-covesare positional forces

destabilize one half of the modes simultaneously at e¥2ryig. 6(d). In order
to localize the instability, a combination of circulatomycadissipative forces is re-
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Fig. 6 The mechanism of subcritical flutter: The ring (bubble) ofngdex eigenvalues under the
surface Ra@ = 0 due to action of full dissipation with dBt> 0 - a latent source of instability
(a); emersion of the bubble of instability due to indefiniterging with deD < 0 (b); repulsion
of eigenvalue branches of the spectral mesh due to actioiraflatory forces (d); collapse of
the bubble of instability and immersion and emersion of @g$due to action of dissipative and
circulatory forces (e); stability domains in case of indiéddimlamping (c) and full dissipation (f).

quired. Non-conservative positional forces destroy thgbleiinto two branches and
shift one of them to the region of positive real parts everaisecof full dissipation
Fig. 6(e). Since the branch remembers the existence of thielduthe subcritical
flutter, which is responsible for the onset of squeal in bsaleedeveloping near the
nodes of the spectral mesh at a frequessgy< w < wg; whenQ? < Q2 with

~ D d2p2detD — v2 L v d2p2detD — v2
Qo =0 \/v2 ~ 322D j2)2’ TP = 2p \/v2 — 52p2(trD/2)2 (24)

The first of equations (24) approximates the boundary of tmeain of asymptotic
stability, which bifurcates with the change of sign of Defig. 6(c,e).

Conclusions

Investigation of stability and sensitivity analysis of ttritical parameters of near-
Hamiltonian, near-reversible, and near-potential systsncomplicated by the sin-
gularities of the boundary of the domain of asymptotic stigbivhich can bifurcate

due to change of the structure of the matrices involved. Thegsed approach is
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an efficient analytical tool for the description of the memisans of stabilization and
destabilization in the modern problems of rotor dynamias acoustics of friction
of rotating continua, containing circulatory forces andefinite damping.
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