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Abstract Asymptotic stability is examined for a linear potential system perturbed
by small gyroscopic, dissipative, and non-conservative forces as well as for a cir-
culatory system with small velocity-dependent forces and for a gyroscopic system
with small dissipative and circulatory forces. Typical singularities of the stability
boundary are revealed that govern stabilization and destabilization and cause the
imperfect merging of modes. Sensitivity analysis of the critical parameters is per-
formed with the use of the perturbation theory for eigenvalues and eigenvectors of
non-self-adjoint operators. In case of two degrees of freedom, stability boundary is
found in terms of the invariants of matrices of the system. Bifurcation of the stabil-
ity domain due to change of the structure of the damping matrix is described. As a
mechanical example, the onset of stabilization and destabilization in the models of
gyropendulums and of rotating continua in frictional contact is investigated

1 Introduction

We consider a non-conservative system depending on three parametersΩ , δ , andν

ẍ+(ΩG+ δD)ẋ+(K + νN)x = 0 (1)

with the real matricesK = KT , D = DT , G = −GT , andN = −NT of potential,
dissipative, gyroscopic, and non-conservative positional (circulatory) forces, where
dot stands for the time differentiation andx ∈ R

m. A circulatorysystem

ẍ+(K + νN)x = 0 (2)

as well as agyroscopicone
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ẍ+ ΩGẋ+Kx = 0. (3)

possess symmetries that are evident after transformation of (1) to ẏ = Ay with

A(δ ,Ω ,ν) =

[
− 1

2ΩG I
1
2δΩDG+ 1

4Ω2G2−K−νN −δD− 1
2ΩG

]
, y =

[
x
ẋ+ 1

2ΩGx

]
,

whereI is the identity. The matrixA(0,0,ν) has areversiblesymmetryRAR =−A
[8], while A(0,Ω ,0) possesses theHamiltoniansymmetryJAJ = AT [13], where

R = R−1 =

[
I 0
0 −I

]
, J = −J−1 =

[
0 I
−I 0

]
. (4)

In both cases det(A−λ I) = det(A +λ I), which implies marginal stability if all the
eigenvalues are purely imaginary and semi-simple.

In the presence of all the four forces, the symmetries are broken and the marginal
stability is generally destroyed. Instead, system (1) can be asymptotically stable.
Modern applications in rotor dynamics, hydrodynamics, stability and optimiza-
tion of structures, and acoustics of friction frequently lead to the linearized equa-
tions of motion (1) withδ ,Ω ≪ ν (near-reversible system), with δ ,ν ≪ Ω (near-
Hamiltonian system), or with δ ,Ω ,ν ≪ 1 (near-potential system).

Historically, Thomson and Tait in 1879 were the first who found that dissipation
destroys the gyroscopic stabilization (dissipation-induced instability) [13]. A simi-
lar effect of non-conservative positional forces on the stability of gyroscopic systems
has been established by Lakhadanov [3]. A more sophisticated manifestation of the
dissipation-induced instabilities has been discovered byZiegler on the example of
a double pendulum loaded by a follower force with the damping, non-uniformly
distributed among the natural modes [1]. Without dissipation, the Ziegler pendulum
is a reversible system, which is marginally stable for the loads non-exceeding some
critical value. Small dissipation of ordero(1) makes the pendulum either unstable or
asymptotically stable with the critical load, which generically is lower than that of
the undamped system by the quantity of orderO(1) (the destabilization paradox).
Similar discontinuous change in the stability domain for near-Hamiltonian systems
has been observed by Holopainen [2, 13] in his study of the effect of dissipation on
the stability of baroclinic waves in Earth’s atmosphere, byHoveijn and Ruijgrok on
the example of a rotating shaft on an elastic foundation [6],and by Crandall, who
investigated a gyroscopic pendulum with stationary and rotating damping [7].

As it was understood during the last decade, the reason for the destabilization
paradox in multiparameter near-reversible and near-Hamiltonian systems is multi-
ple eigenvalues related to the singularities of the stability boundary. Hoveijn and
Ruijgrok were the first who associated the discontinuous change in the critical load
in their example to the Whitney umbrella singularity [6]. The same singularity has
been identified on the stability boundary of the Ziegler pendulum [11], of the mod-
els of disc brakes [16, 19], of the rods loaded by follower force [12], and of the
gyropendulums and spinning tops [14, 18]. These examples reflect the general fact
that the codimension-1 Hamiltonian (or reversible) Hopf bifurcation can be viewed
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as a singular limit of the codimension-3 dissipative resonant 1 : 1 normal form and
the essential singularity in which these two cases meet is topologically equivalent to
Whitney’s umbrella [10, 13].

Despite the achieved qualitative understanding, the growing number of applica-
tions demonstrating the destabilization paradox [9, 16, 13, 17, 21] as well as the
need for a justification for the use of Hamiltonian or reversible models to describe
real-world systems that are in fact only near-Hamiltonian or near-reversible, requires
the development of new analytical tools for a unified treatment of this phenomenon.

In the present paper we propose an efficient sensitivity analysis for calculation
of the stability boundaries and for evaluation of critical parameters of system (1) in
near-reversible, near-Hamiltonian, and near-potential cases.

2 A circulatory system with small velocity-dependent forces

We begin with the near-reversible case (δ ,Ω ≪ ν).

Proposition 1. If trK > 0 and detK ≤ 0, circulatory system (2) with two degrees
of freedom is stable forνd

2 < ν2 < ν f
2, unstable by divergence forν2 ≤ νd

2, and
unstable by flutter forν2 ≥ ν f

2, where the critical valuesνd andν f are

0≤
√
−detK =: νd ≤ ν f :=

√
(trK/2)2−detK . (5)

If trK > 0 anddetK > 0, the circulatory system is stable forν2 < ν f
2 and unstable

by flutter forν2 ≥ ν f
2. If trK ≤ 0, the system is unstable.

At the flutter boundaryν = ν f there exist a double eigenvalueiω f with the right
and left Jordan chainsu0, u1 andv0, v1

(−ω2
f I +K + ν fN)u0 = 0, (−ω2

f I +K + ν f N)u1 = −2iω f u0,

vT
0 (−ω2

f I +K + ν fN) = 0, vT
1 (−ω2

f I +K + ν fN) = −2iω f vT
0 , (6)

whereω f =
√

trK/2 for m= 2. Forν > ν f the flutter instability is caused by two of
the four complex eigenvalues lying on the branches of a hyperbolic curve Imλ 2−
Reλ 2 = ω2

f , see Fig. 1. In the vicinity ofν = ν f we have [11]

λ (ν) = iω f ± µ
√

ν −ν f + . . . , u(ν) = u0± µu1
√

ν −ν f + . . .

v(ν) = v0± µv1
√

ν −ν f + . . . , (7)

whereµ2 = −vT
0 Nu0(2iω f vT

0 u1)
−1 is real. Form= 2 we haveµ2 = ν f /2ω2

f > 0.
System (1) withm= 2 and detG = detN = 1 is asymptotically stable iff [14]

δ trD > 0, trK +δ 2detD+Ω2 > 0, detK +ν2 > 0, −(ν −ν−
cr)(ν −ν+

cr) > 0, (8)

whereν±
cr(δ ,Ω) = a−1(Ωb±

√
Ω2b2 +ac)δ , β∗ = (2ν f )

−1tr(KD −ω2
f D), and
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Fig. 1 Stability diagrams and trajectories of eigenvalues for theincreasing parameterν > 0 for the
circulatory system (2) with trK > 0 and detK < 0 (a) and trK > 0 and detK > 0 (b).

a(δ ,Ω) = 4Ω2 + δ 2(trD)2, b(δ ,Ω) = 4ν f β∗ +(δ 2detD+ Ω2)trD,

c(δ ,Ω) = ν2
f ((trD)2−4β 2

∗ )+ (ω2
f trD−2ν f β∗)(δ 2detD+ Ω2)trD. (9)

Calculatingν±
0 (β ) = limδ→0 ν±

cr(δ ,β δ ) and then isolatingβ yields a linear ap-
proximation to the stability boundary in the vicinity of theν-axis

Ω =
ν f

ν

[
β∗±

trD
2

√
1− ν2

ν2
f

]
δ . (10)

According to (10) the configuration of the domain of asymptotic stability depends
on the structure of the matrixD. Due to the identity

β 2
∗ −

(trD)2

4
= −detD− (k12(d22−d11)−d12(k22−k11))

2

4ν2
f

(11)

the set of indefinite damping matrices is subdivided into twoclasses.

Definition 1. We call a 2×2 real symmetric matrixD with detD < 0 weakly indef-
inite, if 4β 2

∗ < (trD)2, andstrongly indefinite, if 4β 2
∗ > (trD)2.

ForK > 0 and a positive (semi)definite or a weakly-indefinite matrixD the addi-
tion of small velocity-dependent forces blows the stability interval of a circulatory
systemν2 < ν2

f up to a three-dimensional region bounded by the parts of a singu-
lar surfaceν = ν±

cr(δ ,Ω), which belong to the half-spaceδ trD > 0, Fig. 2(a). The
interval ν2 < ν2

f forms an edge of a dihedral angle. Atν = 0 the angle reaches
its maximum(π), creating another edge along theΩ -axis. While approaching the
points±ν f , the angle becomes more acute. Leaving only the second orderterms
and then substitutingβ = Ω/δ in the expansions following from (10)

ν f ∓ν±
0 (β ) = 2ν f (trD)−2(β ∓β∗)2 +o((β ∓β∗)2), (12)

we get equations of the formZ = X2/Y2, which is canonical for the Whitney um-
brella surface [6, 10]. The extension to arbitrarym is provided by the statement.
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Fig. 2 The domain of asymptotic stability of the two-dimensional system (1) with the singularities
Whitney umbrella, dihedral angle, trihedral angle, andbreak of an edgewhenK > 0 and 4β 2

∗ <
(trD)2 (a),K > 0 and 4β 2

∗ > (trD)2 (b), and when trK > 0 and detK < 0 (c).

Theorem 1.Let the system (2) with m degrees of freedom be stable forν < ν f .
Define the real quantitiesβ∗ = −vT

0 Du0(vT
0 Gu0)

−1 and

d1 = Re(vT
0 Du0), d2 = Im(vT

0 Du1 +vT
1Du0),

g1 = Re(vT
0 Gu0), g2 = Im(vT

0 Gu1 +vT
1 Gu0). (13)

Then, in the vicinity ofβ := Ω/δ = β∗ the limit of the critical flutter loadν+
cr of the

near-reversible system (1) with m degrees of freedom asδ → 0 is

ν+
0 (β ) = ν f −

g2
1(β −β∗)2

µ2(d2 + β∗g2)2 +o((β −β∗)2) ≤ ν f . (14)

Proof. Perturbing a simple eigenvalueiω(ν) of the stable system (2) at a fixedν <
ν f by small dissipative and gyroscopic forces yields the increment

λ = iω − vTDu
2vTu

δ − vTGu
2vTu

Ω +o(δ ,Ω). (15)

Substituting expansions (7) into (15) and equating the realfirst order increment to
zero yields expression (14) for|β − β∗| ≪ 1, which form = 2 is reduced to (12).
⊓⊔

WhenD approaches the threshold 4β 2
∗ = (trD)2, two smooth parts of the stability

boundary come towards each other until they touch, whenD is at the threshold.
After D becomes strongly indefinite this temporary configuration collapses into two
pockets of asymptotic stability, as shown in Fig. 2(b). Eachof the two pockets has a
Whitney umbrella as well as two edges which meet at the originand form the “break
of an edge” singularity. In case of an indefinite matrixK the conditionν2 > ν2

d
divides the domain of asymptotic stability into two parts, Fig. 2(c). Qualitatively,
this configuration does not depend on the properties of the matrix D.

Note that the parameter 4β 2
∗ − (trD)2 obtained from the local perturbation anal-

ysis governs the global bifurcation of the whole stability domain, which is seen at
ν = 0 when the stability domain is described by the inequalityc(δ ,Ω) > 0, Fig. 3.
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Fig. 3 Bifurcation of the domain of the asymptotic stability (white) in the plane(δ ,Ω) at ν = 0
with the change of the matrixD from the positive definite or weakly indefinite to strongly indefinite.

Inequalities (8) describe the stability domain ofm= 2-dimensional near-potential
system, shown in Fig. 2(a,b). In case of arbitrarym approximation to the domain is
captured by the first- and second-order terms in the Taylor series for simple eigen-
values [5] of the matrixK perturbed by the gyroscopic, dissipative and circulatory
forces. The case whenK has repeated eigenvalues will be considered in Section 4.

3 A gyroscopic system with weak damping and circulatory forces

Stability of a two-dimensional gyroscopic system (3) in theabsence of dissipative
and circulatory forces(δ = ν = 0) is given by the following statement.

Proposition 2. If detK > 0 and trK < 0, gyroscopic system (3) with two degrees
of freedom is unstable by divergence forΩ2 < Ω−

0
2, unstable by flutter forΩ−

0
2 ≤

Ω2 ≤ Ω+
0

2
, and stable forΩ+

0
2
< Ω2, where the critical valuesΩ−

0 andΩ+
0 are

0≤
√
−trK −2

√
detK =: Ω−

0 ≤ Ω+
0 :=

√
−trK +2

√
detK . (16)

If detK > 0 andtrK > 0, the gyroscopic system is stable for anyΩ .
If detK ≤ 0, the system is unstable.

For K < 0 the statically unstable potential system can be stabilized by the gy-
roscopic forces. With the increase ofΩ2 the complex eigenvalues move along the
circle Reλ 2 + Imλ 2 = ω2

0 =
√

detK until at Ω2 = Ω+
0

2 they reach the imaginary
axis and originate double eigenvalues±iω0, Fig. 4. The onset of the gyroscopic
stabilizationΩcr(δ ,ν) of the near-Hamiltonian system deviates fromΩ+

0 [18].

Theorem 2.Let the system (3) with even number m of degrees of freedom be gyro-
scopically stabilized forΩ > Ω+

0 and let atΩ = Ω+
0 its spectrum contain a double

eigenvalue iω0 with the Jordan chainu0, u1, satisfying the equations

(−Iω2
0 + iω0Ω+

0 G+K)u0 = 0,

(−Iω2
0 + iω0Ω+

0 G+K)u1 = −(2iω0I + Ω+
0 G)u0. (17)
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Fig. 4 The gyroscopic system withK < 0: trajectories of the eigenvalues for the increasing pa-
rameterΩ > 0 (left), stability diagram (middle), the domain of asymptotic stability of the near-
hamiltonian system with the Whitney umbrella singularities (right).

Define the real quantitiesγ∗ = −iω0uT
0 Du0(uT

0 Nu0)
−1 and d1, d2, n1, n2 as

d1 = Re(uT
0 Du0), d2 = Im(uT

0 Du1−uT
1 Du0),

n1 = Im(uT
0 Nu0), n2 = Re(uT

0 Nu1−uT
1 Nu0), (18)

where the bar over a symbol denotes complex conjugate. Then,in the vicinity of
γ := ν/δ = γ∗ the limit of the critical value of the gyroscopic parameterΩ+

cr of the
near-Hamiltonian system asδ → 0 is

Ω+
cr(γ) = Ω+

0 +
n2

1(γ − γ∗)2

µ2(ω0d2− γ∗n2−d1)2 +o((γ − γ∗)2) ≥ Ω+
0 . (19)

With γ = ν/δ expression (19) gives an approximation to the stability boundary
of the near-Hamiltonian system in the vicinity of the Whitney umbrella singularity,
Fig. 4. In case ofm= 2 degrees of freedom the estimate (19) is reduced to

±Ω+
cr(γ) = ±Ω+

0 ±Ω+
0

2
(ω0trD)2 (γ ∓ γ∗)2 +o((γ ∓ γ∗)2) (20)

with γ∗ = (2Ω+
0 )−1tr[KD +(Ω+

0
2−ω2

0)D], see e.g. [14, 18]. ForK > 0 the domain
of asimptotic stability has a shape of the twisted dihedral angle, Fig. 2(a,b).

An instructive illustration to the general analysis is the domain of asymptotic
stability of the modified Maxwell-Bloch equations that are the normal form for ro-
tationally symmetric, planar dynamical systems [13] and describe, in particular, sta-
bility of the vertical equilibrium of the Hauger gyropendulum [4, 20]. The equations
follow from (1) for m= 2, D = I , andK = κ I , and can be written as

ẍ+ iΩ ẋ+ δ ẋ+ iνx+ κx= 0, x = x1− ix2. (21)

According to (8) the solutionx= 0 of (21) is asymptotically stable if and only ifδ >
0 andΩ > ν/δ −(δ/ν)κ . Forκ > 0 the stability domain is a twisted dihedral angle
causing gyroscopic destabilization, Fig. 5(a). Forκ < 0 the domain of asymptotic
stability collapses into two disjoint parts that are pockets of two Whitney umbrellas
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Fig. 5 Two configurations of the asymptotic stability domain of themodified Maxwell-Bloch equa-
tions forκ > 0 (a) andκ < 0 (b) corresponding togyroscopic destabilizationandgyroscopic sta-
bilization respectively; Hauger’s gyropendulum (c).

singled out by inequalityδ > 0. Consequenctly, the system unstable atΩ = 0 can
become asymptotically stable at greaterΩ , as shown in Fig. 5(b) by the dashed line.

4 Subcritical flutter of rotating continua in fricitonal con tact

Equations (1) withΩ = 2Ω̃ andK = (ρ2− Ω̃2)I describe a two-mode approxima-
tion of the models of rotating continua in frictional contact [15, 19]. In the absence
of dissipative and non-conservative positional forces theeigenvaluesλ±

p = iρ ± iΩ̃ ,

λ±
n =−iρ± iΩ̃ of the operatorL0(Ω̃ ) = Iλ 2+2λ Ω̃G+(ρ2−Ω̃2)I forma spectral

mesh[19] in the plane(Ω̃ , Imλ ). Two nodes of the mesh at̃Ω = Ω̃0 = 0 correspond
to the double semi-simple eigenvaluesλ = ±iρ .

Consider a perturbationL0(Ω̃)+∆L(Ω̃ ), assuming that∆L(Ω̃ ) = δλD+νN∼
ε. For smallΩ̃ andε = ‖∆L(0)‖ the perturbed eigenvalueiρ is [20]

Reλ = −µ1 + µ2

4
δ ±

√
|c|+Rec

2
, Imλ = ρ ±

√
|c|−Rec

2
, (22)

whereµ1 andµ2 are the eigenvalues ofD, and

Rec =

(
µ1− µ2

4

)2

δ 2− Ω̃2 +
ν2

4ρ2 , Imc =
Ω̃ν
ρ

. (23)

According to (22) independently on the structure of the matrix D, the primary
role of dissipation is the creation of the bubble of instability. It is submerged below
the surface Reλ = 0 in the space(Ω̃ , Imλ ,Reλ ) in case of full dissipation Fig. 6(a)
and partially lies in the domain Reλ > 0 when damping is indefinite Fig. 6(b). In
contrast to the effect of indefinite damping, the non-conservative positional forces
destabilize one half of the modes simultaneously at everyΩ , Fig. 6(d). In order
to localize the instability, a combination of circulatory and dissipative forces is re-
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Fig. 6 The mechanism of subcritical flutter: The ring (bubble) of complex eigenvalues under the
surface Reλ = 0 due to action of full dissipation with detD > 0 - a latent source of instability
(a); emersion of the bubble of instability due to indefinite damping with detD < 0 (b); repulsion
of eigenvalue branches of the spectral mesh due to action of circulatory forces (d); collapse of
the bubble of instability and immersion and emersion of its parts due to action of dissipative and
circulatory forces (e); stability domains in case of indefinite damping (c) and full dissipation (f).

quired. Non-conservative positional forces destroy the bubble into two branches and
shift one of them to the region of positive real parts even in case of full dissipation
Fig. 6(e). Since the branch remembers the existence of the bubble, the subcritical
flutter, which is responsible for the onset of squeal in brakes, is developing near the
nodes of the spectral mesh at a frequencyω−

cr < ω < ω+
cr whenΩ̃2 < Ω̃2

cr with

Ω̃cr = δ
trD
4

√
δ 2ρ2detD−ν2

ν2− δ 2ρ2(trD/2)2 , ω±
cr = ρ ± ν

2ρ

√
δ 2ρ2detD−ν2

ν2− δ 2ρ2(trD/2)2 . (24)

The first of equations (24) approximates the boundary of the domain of asymptotic
stability, which bifurcates with the change of sign of detD, Fig. 6(c,e).

Conclusions

Investigation of stability and sensitivity analysis of thecritical parameters of near-
Hamiltonian, near-reversible, and near-potential systems is complicated by the sin-
gularities of the boundary of the domain of asymptotic stability, which can bifurcate
due to change of the structure of the matrices involved. The proposed approach is
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an efficient analytical tool for the description of the mechanisms of stabilization and
destabilization in the modern problems of rotor dynamics and acoustics of friction
of rotating continua, containing circulatory forces and indefinite damping.
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