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Abstract

The influence of small velocity-dependent forces on
the stability of a linear autonomous non-conservative
systemn of general type is studied. The problem is in-
vestigated by an approach based on the analysis of
multiple roots of the characteristic polynomial whose
coefficients are expressed through the invariants of
the matrices of 4 non-conservative system. For sys-
tems with two degrees of freedom approximations of
the domain of asymptotic stability are constructed
and the structure of the matrix of velocity-dependent
forces stabilizing a circulatory system is found. As
mechanical examples the Bolotin problem and the
Herrman-Jong pendulum are considered in detail.

1 Stabilization of a circulatory system

1.1 Imtroduction

We consider a lincar autonomous non-conservative
system ,

o d .
_dt§+Dd_§ + Ay =0, (1)
where M, D and A are real 2 x 2 matrices of
mass, damping and gyroscopic forces as well as non-
conservative positional {circulatory) forces. Assum-
ing that y = ue™ we arrive at the eigenvalie problem

M

(MX2 + DA+ Adu = 0. (2)
Stability of system (1) depends on the loci
of the roots of the characteristic polynomial

P(N)=det(A2M+AD+A) of cigenvalue problem (2)
in the complex plane. In the absence of the velocity-
dependent forces the cireulatory (1] system

I’y
M
at?

+Ay=0 (3)

can never be asymptotically stable, but it can be
marginally stable oscillating with the limited am-
plitude. An introduction of the velocity dependent
forces with the matrix D may lead the circulatory
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system both to the asymptotic stability and to the
instability. That depends on a structure of the ma-
trix D. The goal of our paper is to express the condi-
tions of asymptotic stability of the linear circulatory
system perturbed by the velocity-dependent forces
D, directly in terms of the matrices M, D and A.

1.2 Asymptotic stability domain

As it follows from the Appendix the characteristic
polynomial of eigenvalue problem (2) has a compact
form convenient for investigation of stability

P(3)=det MA*+tr(D' M)A+ (tr (ATM)+ det D)A* +
+tr(ATDIX + det A, (4)
where D', A" are the matrices adjoint to D, A

D = [ dyy  —diz ] Al = [ G2 —@12 }
—dy  dp ]’ —az  an

In the case of rn > 2 degrees of freedom the main tool

allowing to represent a characteristic polynomial by

means of the invariants of the matrices involved is

the Leverrier~Faddejev algorithm, see Appendix.

Assume that for D = 0 the spectrum of the eigen-
value problem

(MX -+ Au=0 (5)

corresponding to the unperturbed circulatory system
(3) consists of the double purely imaginary eigenval-
ues Ag= + iwp {wo # co) with the Jordan chain of
length 2. The necessary and sufficient conditions for
the roots tiwg (wo # oo) of the polynomial

P(A)=det MM +tr(ATM)IAZ+ det A, (6)

to  be double are detM # 0 and
(tr{ AAM)}?=4 det M det A. As a consequence
we have

det A=wp det M, tr(AIM)=2widetM. (7)
Circulatory system {3), (7) belongs to the boundary

between the stable systems and dynamically unsta-
ble (flutter) systems {1, 2] and is therefore unstable.
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tlow should one choose the matrix D of the velocity-
dependent forces to make circulatory system (3), (7)
asymptoticaily stable?

Applying the Routh-Hurwitz criterion of asymptotic
stability to polynomial (4) and taking into account
conditions (7) we find the inequalities describing the
asymptotic stability domain in the vicinity of the
circulatory system (3), (7)

detM >0, rDIM>0, A D>0,

2wy det M + det D>0, w)detM >0, (8)

trA D DM det D> det M(trATD - witrDIM)?,

Further we will assume that the matrix M has
det M>0. In this case inequalities (8) are equivalent
to the following three conditions

rAD DM det D > det M (tr AT D — witrDIM)2.

detD >0, DM > 0. )]

Lemma 1 Inequalities (9) are the necessary and
sufficient conditions for the matriz D of the velocity-
dependent forces to make circulatory sysiem (3) with
the matrices A and M (det M>0) salisfying condi-
tons (7] asympiotically stable. :

One can sec from inequalities (9) that threc param-
eters trDTM, trAID, and det D naturally appear in
the stability conditions. The asvmptotic stability
boundary is therefore a surface

trAD trD'M det D=det M (tr AD — w2 trDIM)?)

det D>0, DM >0 (10)

in the space of the parameters trDIM, trAlD, and
det D), Figure 1.

Let us show that for small velocity-dependent. forces
this surface is the well-known Whitney umbrella [3].
For this purpose we assume D=eD, where ¢>0 is a
small parameter., From Eq.(10) we can find that on
the boundary of the asymptotic stability domain

5 ~
trAD = trDiM (wg _ € detD

=+
2 det M

o \/detf) e det D
z ‘F —_— (: —_—— =
"V det™M 402 det M

= D T MI(Wh + ewgy/ det f)/det M+0(e2)).

(1)

Figure 1: The geometrical meaning of the Routh-
Hurwitz conditions {9): The Whitney um-
brelta (the tangent cone is hatched).

Eq.(11) without term Ofe?) rewritten in the form

det D
det M
describes the surface XVY?=Z% known as the

Whitney umbrella [3] with X=detD/detM,
Y =wotrDIM, Z=tr AtD —witrDIM.

(1rAlD — w2erDIM)? = wa(trDTM)? - (12)

Thus, for fairly small perturbasions D asymptotic
stability domain (9) in the neighborhood of the cir-
culatory system (3), (7) is approximated by the fol-
lowing inequalities .

trD'M > 0, detD >0,

::EI\?IMS(HDTM)Z > (trA D — wituDIM)®. (13)
Omne can see that the asymptotic stability exists in-
side of a half of the Whitney umbrella, shown in Fig-
ure 1 in the space of the parameters trDTM, tr AT D,
and det . At the origin the stability domain has a
generic singularity ”deadlock of an edge” [3], corre-
sponding to the double eigenvalue éwg of the matrix
pencil MA%2+A of the unperturbed circulatory sys-
tem (3).

1.3 Tangent cone to the stability domain and
the structure of a stabijlizing perturbation
Consider the plane tr D —w3trDtM=0 in the space
of parameters trDD'M, trA'D, and det D. The part
of this plane definred by the inequalities det D>0,
trDIM>0 belongs to the asymptotic stability do-
main {9). Indeed, in this case the first of inequalities
(9) is satisfied because trAID=w2aDIM > 0. We
thus have proved the following

Lemma 2 Sufficient conditions for a 2x2 matriz D
to stabilize a circulatory system (3) with the given
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2x2 matrices A and M (det M >0} satisfying Eq.(7)
are
trA'D — witrD'M = 0, (14)

det D>0, trD'M > 0. (15)

Consider again the asymptotic stability domain (%)
in a small neighborhood of the origin.  Assuming
D=cD where ¢>0 is a small parameter we rewrite
the first of inequalities (8) in the form

tr A DD M det De? >¢? det M (LrATfJ—wgt.rﬁTM)'z.

One can sce that for ¢—0 this condition is sat-
isfied only for the matrices D lying in the plane
tr Al D —wZterD'M = 0. This means that in the vicin-
ity of the origin the asymptotic stability domain (9)
is vory narrow, so it is well approximated by the set
given by Egs.(14), (15), which in fact is a tangent
cone to this domain, L.e. a set of vectors starting at
the origin and lying in the domain. Such a geome-
try of the asymptotic stability domain is responsible
for the destabilization paradox due to small damping
[1, 4] because in the generic case a small persurba-
tion I leads to instability. The sufficient conditions
given by Lemma 2 allow us to find the stabilizing
velocity-dependent perturbation in’an explicit form.

Lemma 3 Velocity-dependent forces with the matriz

o0

D= cpMM™ A, detM>0, ¢, >0, (16}

pe=—0o0
where 1 43 an inleger index, tnake circulatory system
(31,(7) asymptotically stable.
Proof: For the proof it’s enough to consider
D=M(M"!A)*. Using the identitics
MM = 1detM, ATA =wildet M,

where T is the identity matrix we rewrite D in the
{ollowing form

D = M{M!A)?(det M) 2.

First, we check the inequalities (15). Substitution of
the matrix D given by equation {(17) into {13) yields

det D = det M({det A)? = det M{w] det M}* > 8,

(17)

_ trMID = 2037 det M > 0.
To verify condition (14} we note that for p > 0

tr{ATM)? = tr(MF A = 2(wd det MY, (18)

which can be proven by induction. Then, for p > 0
we obtain after obvious transformations

r(ATMOM AY)

trAlD = i Sdadielet A4
i Tdet M)?

= ngm'z det M,

5 tr(MIA)P
? (det M)P—1
which means that condition (14) is satisfied. In the
case p < [} we take p = —|p| and represent the matrix
D in the form
D = M(ATM)IP/{wd det M) 7L,
Then, with the use of (18) we obtain
rAD = witrMID = 207 P det ML

We find that for any integer p the matrix
D=M(M~1A) satisfies sufficient conditions of
asymptotic stability (14) and (15), which required
to be proved. [ ]

witrMiD = w = 2w P det M,

From the Lemma 3 it follows that the linear combina-
tion D=aM+SA has a stabilizing influence on cir-
culatory system (3), (7). Notice that formula (16) for
the stabilizing velocity-dependent perturbation was
found first by Walker [5]. His derivation was based
on 2 special form of the Liapunov function. We got
the same resuit from the study of the characteristic
polynomial (4) of a general linear non-conservative
system (1). -

Let us find the explicit form of the symmetric matri-
ces D realizing the perturbations stabilizing circula-
tory system (3), (7). Expressing Eq.(14) by means
of the entries of the matrices M, D and A we get

(ar1~womy s Yy +(azs —wimae Ydy1 = (19)

=(a12*w3m12)d£1+((1‘21—wgmzl)drz, dia=d2-
[solating the term djz in Eq.(19) we can write the
structure of the matrix D a8

dyy dip

D-
dy  das

; (20)

diy {wgmz'z‘—azz)-*-(w%mu —~ayq, )dez
(wimiz—ayy)+{wimar ~ap)

diy=dy =

To stabilize circulatory system (3), (7) the matri-
ces D with the structure {20) must also satisfy the
two inequalities (15). Calculating the determinant of
matrix (20) and taking into account the positiveness
of tr(DTM) we get the additional conditions on the
entries of the symmetric matrix D

1—\/1—4£L'g.’l)2 2<d;1< 1+\/1—4:L'1:L‘2 :
211:2 dgg 2.’1}2 ’

wé'mii—aii

i=1,2; (21)

= (wgm1z—a12)+(w§7n21“Gm)’
[£A) (mlz+mgl)Am“(a12+agl)
ax(maztma ) —mee(aiz+az )
Therefore, symnetric matrices D with the structure
given by Eqs.(20)-(22) realize stable perturbations
of circulatory system (3), (7).

dyy+dze >0, (22)
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2 Two mechanical examples

2.1 The Bolotin problem
We first consider the linear non-couservative system
with 2 degrees of frendom with the generalized coor-

dinates 1 (¢) and yo(2) {1, 4]:
i d'yl
Tf'f'? + k1 — + wl (7,'{ + qbray2) = 0.
d4 di
Sy l\gg“lf— +wiys +gbngn) = 0. (23)

where wy and wy are the eigenfrequencies of a con-
servative system, ky and ky are the dissipation pa-
rameters, g 18 the non-conservative load parameter,
and by, by are the cocHicients of the matrix of non-

conscrvative positional forces. Tt is assumed that

biabyy < 0 [1, 4]. Tn this problem M = I, where
1 is the identity matrix, and
by 0 w? wigbiy
1= = . L 1 M i
! { 0 ks J A [ wighy  wh (24)

The matrix A has the double eigenvalue iwy when
the parameter g reaches its critical value
s - wi

w= 2w|w2v«b1->b£' . (25)
If the dissipation parameters £;=0, k2=0 and the
load parameter ¢ is equal to go given by Eq.(25),
then syssem (23) is circulatory and belongs to the
boundary between the stability and flutter domains.
According to Lemma 3 the stabilizing matrix D of
the dissipative forces can be chosen proportional to
the matrix M==I. Hence, for asymptotic stability we
should at least take ky=ky>0.

A more delicate result can be obtained after calcula-
tion of the quadratic approximation of the stability
domain in the plane of parameters k|, k. This do-
main defined by inequalities (9) has the boundary,
which is a part of the surface (10) approximated by
Eq.(12). Calculating the necessary ingredients

wo=(wiwy) /2, tDIM=k;+ks,

detD=ki ko, trAD=kwithkow? (26
and substituting them into Bq.(12) we find

Fre? + kaw? = (ky + k)P0 j“zi

eV G SR, ks 0 (27

V2
Secking for the coefficient %k, in the form
ky==ak.+bki+olk}) we get from Eq.(27)

,.\/_(w, 1wl dwy
u=1, -
wi — wk wi — w3

Figure 2: The Herrmann-Jong pendulum.

Finally, we arrive at the equation describing the
boundary of the asymptotic stability domain

9 et ol .
ky o= ks —wgf‘“—:;"?)kg + o(k2).
17 %2

(28)

Approximation (28) exactly coincides with the equa-
tion of the stability boundary obtained earlier in the
work [4] from the Routh-Hurwitz criterion applied
directly to system (23).

2.2 The Herrmann-Jong pendulum

Consider a double pendulum composed of two rigid
weightless bars of equal length {, which carry con-
centrated masses m;=2m, ms=m. The generalized
coordinates ¢, and ¢ are assumed to be small. A
follower load @ is applicd at the free end, as shown
in Figure 2. At the hinges, the restoring moments
o +odiey fdt and el ~ip1)+ba{dipy /dt—~dip, /dt)
are induced, The linear equations of motion are

2 ¢t
Bl =5+ (b + b2)‘ Pl QU - 2o+
2 Pps L don _
+rmd T by-—— 0 + (- =0,
5 d2 d
mil” d;il — bg% - cp1+

2 sz

+nd? dt’ .+ by pn + opg =0, (29)

where ¢ indicates time, & and by are the damping
coefficients and ¢ characterizes the elastic properties
of the hinges [6]. After introduction of the dimen-
sionless quantities
Q! by by c
=—, k= ko= =i
= Y Vemz® mi?

we arrive at the equation in the form {1}, where

N 3 1 . ki+ky —ko
ol [ )

3
ernd?

11
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Figure 3: The domain of stabilization of the Herrmann-
Jong pendulum (inside of the cusp) and the
tangent cone to this domain (shown by the
thin line).

2—q -1
saat
If she damping is absent, then the system is
marginally stable for the loads ¢ < gy, where the
critical load go corresponds to the double eigenvalue
Ap= k iwy

A= [ (30)

_ 7

wo =274, ’-’“:‘jf\/ﬁ' (31)
The matrix D of the dissipation forces in Eqs.(30) is
symmetric. Let us find the structure of this matrix,
which makes system (29), (31) asymptotically stable.
Substituting the components of the matrices A and
M evaluated at she poiot {31) into equation (20) we

find
1
div=clojz—
b= gy
Taking into account that dyy =k, +ka, dyg=Fky we get
{rom (32) the following condition on the dissipation

pararneters ky and ks

(k1 + k) (2-5V2) +ho (1T415V2) = k.

Isolating &y in Eq.(33) and taking into account in-
equalities (15) we find that

(dy 1 (2-5V2)+daa (17415v2)).  (32)

(33)

ki = (4+5V2ks, ky>0 (34)
and the stabilizing matrix of dissipative forces has
the form

D - d(‘tf)kz ‘2? ke >0, (35)

Equation (34) gives the tangent cone to the asymp-
totic stability boundary in the plane of parameters k;

and ks, Figure 3. To find the more accurate approx-
imation of the stability boundary (10) in the plane
of the dissipation parameters we should just evalu-
ate the invariants of the matrices M, D and A at
the point gy = 7/2 — 2 corresponding to the double
eigenvalue dwp = 127174

detM =2, detD = kyky,

trATD =k + ky, trD'M =k, + 6ky.  (36)

Now substitule Eqgs.(36) into Eq.{12) and obtain

1 kiko
kithko=(k) +6ko) | =L/ —= 1. 3r
1-Hha= (kb 2) (\/5 2ﬁ) (37)

Locking for the coeflicient &; in the form

ky=aky+bki+o(k3) finally we get from Eq.(37)

ky=(4+5v2)ky£1/50(133494V2)k2 +o(k2).  (38)

Asvmptotic stability domain with boundaries (38)
has the form of a cusp as it is shown in Figure 3.
It has a singularity at the origin, so the only direc-
tion leading to the asymptotic stability domain in the
plane of the dissipation parameters is given by Eq.
{34). The asymptotic stability domain with bound-
ary (38) illustrating the destabilization paradox was
found first in the work [4] by the direct analysis of the
characteristic equation of the Herrmann-Jong pen-
dulum. Our approach allowed to extend the results
of [4] to general non-conservative systems with two
degrees of freedom.

3 Conclusions

With the use of the Leverrier-Faddejev algorithin the
explicit expression for the characteristic polynomial
of an m x m matrix by means of its invariants is ob-
tained. Such a representation is found also for the
characteristic polynomial of a quadratic matrix pen-
cil. These results are applied for the detailed inves-
tigation of the stability of general non-conservative
systems with 2 degrees of freedom. The necessary
and sufficient conditions of asymptotic stability are
obtained in terms of the matrices of the system.
The geometrical interpretation of these conditions is
given. The tangent cone to the asymptotic stability
boundary giving simple and practical sufficient con-
ditions of asymptotic stability is found. The struc-
ture of a stabilizing velocity-dependent perturbation
of a circulatory system is established. The approx-
imations of the asymptotic stability domain are ob-
tained, The developed theory is compared with the
results of earlier investigations and used for the study
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of the classical mechanical problems by V.V, Bolotin
and G. Herrmann. The examples considered show
the applicability and accuracy of the theoretical re-
suits obtained In the present paper.
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Appendix

Consider the characteristic polynomial of a matrix

N E szllef!

Putd) = (-1 det(N - AX) =

Zp AT r

r=0

(AL)

where [ € R'™*™ is the identity matrix. The coef-
ficicnts p, can be expressed through the invariants

of the matrix N according to the Leverrier-Faddejev
algorithm (7, 8]

Po = l’ TPy = '—t.r(NNT'—-l);
N() = I: Nr = NNT'—] +P7-I: r=1...m (AZ)

With the use of the notation from [9] we get the ex-
plicit expression for the coefficients p,, r = 1,...,m

1 Z 7! trINI ! N7
meT! L ‘all---a‘,.! 1 r !

Q|,.=1
|@] =0 + 20z + ...

(A3)
The indexes «; are nou-negative integers. Formula

(A3) is proven by induction. Since Py {0} = det N,
the following relation is true for an m x m matrix N

(At.er)a' s = N7

Z , la‘(l]!""?"ﬂ"ﬂz‘r! -

oy 200+ Frar=r

] detN, r=m
a 0, r>m.

+ Tk

(Ad)

Let now the matrix N be a 2 x 2 block matrix

0 1
where the matrix with the zero entries 0, the identity
matrix I, and A, D are real mxm matrices. The

characteristic polynomial of the matrix N is defined
by the equation

Py{()) = det(A\? + DX+ A).

For matrix (AS) we have

(A35)

tx(I\ bl Z (r—s—1)

g (DA D,

where [5] = D&%}
o0<ien/2

polynomial of {A5) has the form
Pr(A) = det(A+A2D)+ A" det (D+AT)— AP +

+(trAtrD-trAD)A*™ 34

Therefore, the characteristic

N trA{(trD)% —trD?)—2tr ADtrD+2tr(AD?) \2m—i .
T 2 T« = -
In particular case, when m = 2, we have

N(A) = (A6)

AY 4 e DAY o+ (trA - det D)A? + tr(ATD)A + det A,

where the adjoint matrix Al is defined by the rela-
tion AAl = Tdet A, [7]. For the characteristic poly-

nomial
P(A) = det(MA% + DA + A),

where M, D, and A are 2 x 2 real matrices we obtain
P(A) = det MA* + tr(D'MYA® + (tr(ATM)+
+det D)A® + tr(ATD)A + det AL (A7)
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