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Linearized models of elastic bodies of revolution, spinning about their symmetrical axes,
possess the eigenfrequency plots with respect to the rotational speed, which form a mesh
with double semi-simple eigenfrequencies at the nodes. At contact with friction pads, the
rotating continua, such as the singing wine glass or the squealing disc brake, start to
vibrate owing to the subcritical flutter instability. In this paper, a sensitivity analysis of
the spectral mesh is developed for the explicit predicting the onset of instability. The key
role of the indefinite damping and non-conservative positional forces is clarified in the
development and localization of the subcritical flutter. An analysis of a non-self-adjoint
boundary-eigenvalue problem for a rotating circular string, constrained by a stationary
load system, shows that the instability scenarios, revealed in the general two-dimensional
case, are typical also in more complicated finite-dimensional and distributed systems.
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1. Introduction

In 1638 Galileo Galilei remarked that ‘a glass of water may be made to emit a tone
merely by the friction of the fingertip upon the rim of the glass’ (Galilei 2001). In
1761 Benjamin Franklin designed an ‘armonica’, where sound was radiated due to
vibration of rotating glass bowls in frictional contact with the moistened fingers of
a performer (Rossing 1994). Shortly after Rayleigh (1877) qualitatively described
the onset of bending waves in the singing wine glass by the friction, applied in the
circumferential direction, and pointed out the proximity of the main audible
frequency of the glass to the one of the spectrum of its free vibrations, Sperry and
Lanchester invented a disc brake (Kinkaid et al. 2003). Nowadays, disc brake
squeal due to vibrations of a rotating annular plate in contact with the friction
pads—in general, a sound with one dominant frequency—is the primary subject of
investigations in acoustics of friction of rotating elastic bodies of revolution
(Mottershead 1998; Akay 2002; Kinkaid et al. 2003; Ouyang et al. 2005).

The author of one of the first theories of squeal, Spurr (1961a),
experimentally observed that a rotating wine glass sang when the dynamic
friction coefficient was a decreasing function of the velocity (Spurr 1961b).
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Linearizing the system with the negative friction-velocity gradient produces an
eigenvalue problem with an indefinite matrix of damping forces. Effectively
negatively damped vibration modes may lead to complex eigenvalues with
positive real parts and cause flutter instability (Freitas et al. 1997; Kirillov
2007a; Kröger et al. 2008; Kliem & Pommer 2008). The growth in amplitude will
be limited in practice by some nonlinearity. Since the engineering design is often
more concerned with if a brake may squeal and less with how loud the brake
may squeal, a complex eigenvalue analysis offers for it a pragmatic approach
used currently by most of production work in industry (Ouyang et al. 2005).

The fall in the dynamic friction coefficient with increasing velocity is among
the main empirical reasons for disc brake squeal, categorized by Kinkaid et al.
(2003). One more is non-conservative positional forces that first appeared in the
linear models by North (1976). The binary flutter in such models happens
through the coalescence of two modes according to the reversible Hopf bifurcation
scenario (Kessler et al. 2007; Sinou & Jezequel 2007; von Wagner et al. 2007;
Kröger et al. 2008). Inclusion of damping leads to the imperfect merging of modes
(Hoffmann & Gaul 2003) and to the flutter through the dissipative Hopf
bifurcation, which is connected to the reversible one by means of the Whitney
umbrella singularity (Kirillov 2004, 2005, 2007c; Sinou & Jezequel 2007).

The non-conservative positional forces in the models of the frictional contact
between the disc and the pads were interpreted by North (1976), Yang & Hutton
(1995), Mottershead et al. (1997) and some other authors as tangential follower
forces (Kinkaid et al. 2003). Despite the existing discussion of the very concept of
the follower forces (Sugiyama et al. 1999, 2002; Elishakoff 2005), their main
role is in bringing the non-potential terms, which can also be of other origin
(von Wagner et al. 2007), into the equations of motion of brakes. The destabil-
izing role of non-potential positional forces in dynamical systems, including the
tippe top inversion and the rising egg phenomena of rotordynamics, was
emphasized recently by Krechetnikov & Marsden (2006; see also Kirillov
2007a,b; Krechetnikov & Marsden 2007; Spelsberg-Korspeter et al. 2008).

Historically, in the study of brake squeal, the symmetry of the disc as well as
the effects of its rotation was frequently ignored. The latter in the assumption
that the low rotor speed range in which squeal tends to occur does not warrant
this complication (Ouyang et al. 2005). However, as in the case of a singing wine
glass, experiments revealed the proximity of the squealing frequency and mode
shape of brake’s rotor for low rotational speeds to a natural frequency and
corresponding mode shape of a stationary rotor (Mottershead 1998; Kinkaid
et al. 2003; Ouyang et al. 2005; Giannini et al. 2006; Massi et al. 2006). Since an
axially symmetric rotor possesses pairs of identical frequencies, Chan et al.
(1994) proposed another mechanism of squeal in the classification of Kinkaid
et al. (2003) based on the splitting of the frequency of the doublet modes in the
symmetric disc when a friction force was applied. The splitting could lead to
flutter equated to brake squeal.

Rotation also causes the doublet modes to split (Bryan 1890). The newborn
pair of simple eigenvalues corresponds to the forward and backward travelling
waves, which propagate along the circumferential direction (Bryan 1890;
Southwell 1921). Viewed from the stationary frame, the frequency of the
forward travelling wave appears to increase and that of the backward travelling
wave appears to decrease, as the spin increases. Double eigenvalues thus
Proc. R. Soc. A (2008)
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originate again at non-zero angular velocities, forming the nodes of the spectral
mesh (Günther & Kirillov 2006) of the crossed frequency curves in the plane
‘frequency’ versus ‘angular velocity’. The spectral meshes are characteristic for
such rotating symmetric continua as circular strings (Schajer 1984; Yang &
Hutton 1995), discs (Iwan & Stahl 1973; Hutton et al. 1987; Mottershead 1998),
rings and cylindrical and hemispherical shells (Chang et al. 1996), vortex rings
(Fukumoto & Hattori 2005) and a spherically symmetric a2-dynamo of
magnetohydrodynamics (Günther & Kirillov 2006).

The lowest angular velocity at which the frequency of a backward travelling
wave vanishes to zero, so that the wave remains stationary in the non-rotating
frame, is called critical (Mottershead 1998). When the speed of rotation exceeds
the critical speed, the backward wave travels slower than the disc rotation speed
and appears to be travelling forward (reflected wave). The effective energy of the
reflected wave is negative and that of the forward and backward travelling waves
is positive (MacKay & Saffman 1986). Therefore, in the subcritical speed region
all the crossings of the frequency curves correspond to the forward and backward
modes of the same signature, while in the supercritical speed region there exist
crossings that are formed by the reflected and forward modes of opposite
signature. According to Krein’s theory (MacKay 1986), under Hamiltonian
perturbations like the mass and stiffness constraints (Iwan & Stahl 1973), the
crossings in the subcritical region veer away into avoided crossings (stability),
while in the supercritical region the crossings of the modes of opposite signature
turn into the rings of complex eigenvalues—bubbles of instability (MacKay &
Saffman 1986)—leading to flutter known also as the ‘mass and stiffness
instabilities’ (Iwan & Stahl 1973).

A supercritical flutter is important for the high-speed applications such as
circular saws and computer storage devices, while in the acoustics of friction of
rotating elastic bodies of revolution, a subcritical flutter is (un)desirable as a
source of instability at low speeds. Being prohibited by Krein’s theory for the
Hamiltonian systems, subcritical flutter can occur, however, due to non-
Hamiltonian perturbations (Bridges 1997). In the 1990s, subcritical flutter was
detected by numerical approaches in the new models of disc brakes that
incorporated gyroscopic and centripetal effects and accommodated more than
one squeal mechanism through the splitting of the doublet modes of a disc by
dissipative and non-conservative perturbations coming from the negative
friction-velocity gradient and frictional follower load. The models include both
the case when the pointwise or distributed friction pads are rotated around a
stationary disc, affecting a point or a sector of it, and when the disc rotates past
the stationary friction pads (see Chan et al. 1994; Mottershead et al. 1997; Xiong
et al. 2002; Kinkaid et al. 2003; Ouyang et al. 2005 and references therein).
Subcritical parametric resonance in the former of the two dual descriptions
(Shapiro 2001) corresponds to the subcritical flutter in the latter.

In this paper, we propose a sensitivity analysis based on the perturbation
theory of multiple eigenvalues of non-self-adjoint operators (Kirillov &
Seyranian 2004, 2005; Kirillov et al. 2005; Günther & Kirillov 2006), which is
an efficient tool for investigation of the subcritical flutter in both the finite-
dimensional and distributed models. Instead of deriving the particular
operators of dissipative and circulatory forces by accurate modelling of the
frictional contact and then studying their effect on the spectrum and stability,
Proc. R. Soc. A (2008)
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we solve an inverse problem. Assuming a priori only the existence of distinct
squeal frequencies close to the double eigenfrequencies of the non-rotating
body, we find the structure of the dissipative and non-conservative operators
whose action causes flutter in the subcritical region near the nodes of the
spectral mesh. We describe analytically the movement of eigenvalues and
the deformation of the spectral mesh. Using these data, we approximate the
stability domain in the space of system’s parameters.

Confirming an empirical duality—supercritical flutter due to indefiniteness of
the matrix of potential forces and subcritical flutter due to indefiniteness of the
matrix of damping forces—we come to new qualitative conclusions. A discovered
singularity of the stability boundary allows for the combinations of dissipative
and non-conservative positional forces yielding the subcritical flutter instability
in the vicinity of the nodes of the spectral mesh even in the case, when the
damping matrix is positive definite with some of its eigenvalues close to zero.
The vanishing and negative eigenvalues of the damping matrix encourage the
development of the subcritical flutter while zero eigenvalues of the matrix of non-
conservative positional forces suppress it. The proposed approach provides
guidance to the classification of dissipative and non-conservative perturbations
by their ability to cause the subcritical flutter, which is helpful in checking and
correcting particular models of disc brakes and other rotating elastic bodies of
revolution in frictional contact.
2. The spectral mesh of a two-dimensional gyroscopic system

Consider a non-dimensional equation of an autonomous non-conservative system

€x Cð2UGCdDÞ _xCððb2KU2ÞI CkK CnNÞx Z 0; ð2:1Þ

where a dot over a symbol denotes time differentiation x 2R
2 and I is the

identity matrix. The real matrices DZDT, GZKGT, KZKT and NZKNT

are related to dissipative (damping), gyroscopic, potential and non-conservative
positional (circulatory) forces with magnitudes controlled by the scaling
factors d, U, k and n, respectively; bO0 is the frequency of free vibrations of
the potential system when dZUZkZnZ0. Without loss of generality, we assume
det GZdet NZ1. Equation (2.1) originates as a two-mode approximation of the
models of rotating bodies of revolution in frictional contact after their
linearization and discretization (Nagata & Namachchivaya 1998; Spelsberg-
Korspeter et al. submitted). It appeared recently in the study of the Benjamin–
Feir instability by Bridges & Dias (2007).

Separating time by setting x(t)Zu exp(lt) we arrive at the eigenvalue problem

Lu Z 0; LZ Il2 Cð2UGCdDÞlCðb2KU2ÞI CkK CnN : ð2:2Þ

The operator L0ðUÞZIl2C2lUGCðb2KU2ÞI has four eigenvalues (Nagata &
Namachchivaya 1998; Hryniv & Lancaster 2001),

lGp Z ibGiU; lGn ZKibGiU; ð2:3Þ
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0

Figure 1. The spectral mesh of system (2.1) when dZnZkZ0.

2325Subcritical flutter in acoustics of friction
forming the spectralmesh in the plane (U, Im l) (figure 1). Twonodes of themesh at
UZU0Z0 in the subcritical interval jUj!UdZb correspond to the double semi-
simple eigenvalues lZGib. The eigenvalue ib has the following two orthogonal
eigenvectors:

u1 Z
1ffiffiffiffiffiffi
2b

p
0

1

 !
; u2 Z

1ffiffiffiffiffiffi
2b

p
1

0

 !
: ð2:4Þ

At the other two nodes at UZGUd double semi-simple eigenvalues are zero.
Under perturbation UZU0CDU, the eigenvalue ib into two simple ones

bifurcates according to the asymptotic formula (Kirillov et al. 2005)

lGp Z ibC iDU
f11C f 22

2
GiDU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f11K f22Þ2

4
C f12f21

s
; ð2:5Þ

where the quantities fjk are

fjk ZuT
k

vL0ðUÞ
vU

uj

����
UZ0; lZib

Z 2ibuT
k Guj : ð2:6Þ

With GZKGT formula (2.5) yields (2.3), because fjjZ0 and f12ZKf21Zi.
A general approach to establishing conditions for existence of the spectral

mesh in multi-dimensional Hamiltonian systems was proposed by Dellnitz et al.
(1992) and Dellnitz & Melbourne (1994). Although the complete investigation of
the spectral mesh and its deformation under both Hamiltonian and non-
Hamiltonian perturbations in system (2.1) with arbitrary number of degrees of
freedom would be very desirable for applications, a restriction to two dimensions
is justified for demonstrating the basic ideas of our theory. On the other hand,
two-dimensional models are widely employed in acoustics of friction
(von Wagner et al. 2007), while our perturbative approach does not depend on
the number of degrees of freedom.
Proc. R. Soc. A (2008)
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3. Deformation of the spectral mesh

Consider a general perturbation of the gyroscopic system L0(U)CDL(U),
assuming that the size of the perturbation DLðUÞZdlDCkKCnNw3 is
small, where 3ZkDL(0)k is the Frobenius norm of the perturbation at UZ0.
For small U and 3 perturbation of lZib is described by the asymptotic formula
(Kirillov et al. 2005)

lGp Z ibC iU
f11C f22

2
C i

e11Ce22

2

Gi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUðf11K f22ÞCe11K e22Þ2

4
CðUf12Ce12ÞðUf21Ce21Þ

s
; ð3:1Þ

where fjk are given by (2.6) and ejk are small complex numbers of order 3,

ejk ZuT
k DLð0Þuj Z ibduT

k Duj CkuT
k Kuj CnuT

k Nuj : ð3:2Þ

With the vectors (2.4) we obtain

Re lZK
m1Cm2

4
dG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcjCRe c

2

r
; Im lZbC

r1Cr2

4b
kG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcjKRe c

2

r
; ð3:3Þ

Re cZ
m1Km2

4

 !2

d2K
r1Kr2

4b

 !2

k2KU2C
n2

4b2
;

Im cZ
Un

b
Kdk

2 trKDKtrK trD

8b
;

9>>>>=
>>>>;

ð3:4Þ

where the eigenvalues m1,2 and r1,2 of the matrices D and K satisfy the equations

m2Km tr DCdet DZ 0; r2Kr trKCdet K Z 0: ð3:5Þ

Formulae (3.3) take into account the forces of all types and explicitly describe
the perturbed spectrum by means of the eigenelements and the derivatives of the
operator with respect to the parameters, calculated solely at the nodes of
the spectral mesh. This is more efficient for describing the deformation of the
spectral mesh, e.g. the veering and merging of eigenvalue branches (Leissa 1974;
Perkins & Mote 1986), than the sensitivity analysis of simple eigenvalues by
Yang & Hutton (1995), Vidoli & Vestroni (2005) and Huang et al. (2007).
(a ) Conservative deformation of the spectral mesh

A deformation of the spectral mesh with dZnZ0 does not shift the eigenvalues
from the imaginary axis, preserving the marginal stability. From expressions
(3.3) and (3.4), we find that near the node (0, b) in the plane (U, Im l)

Im lKbK
r1 Cr2

4b
k

� �2

KU2 Z
r1K r2

4b

� �2

k2; Re lZ 0: ð3:6Þ
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Figure 2. Conservative deformation of the spectral mesh (kO0): K is (a) positive-definite,
(b) positive semi-definite, and (c) indefinite.
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For ks0, equation (3.6) describes a hyperbola with the asymptotes

Im lZbC
r1Cr2

4b
kGU: ð3:7Þ

The asymptotes cross each other above the node (0, b) of the non-deformed
spectral mesh for trKO0, exactly at the node for rZKr2, and below the node
for trK!0. The branches of the hyperbola intersect the axis UZ0 at the points

b1 ZbC
r1

2b
k; b2 ZbC

r2

2b
k: ð3:8Þ

If the eigenvalues r1,2 have the same sign, the intersection points are above the
node for KO0 and below it for K!0 (figure 2a). When one of the eigenvalues r1,2
is zero, which implies semi-definiteness of the matrix K, one of the branches of
the hyperbola passes through the node. The other one crosses the axis UZ0
above the node, if KR0 or below it, if K%0 (figure 2b). If K is indefinite, one of
the points b1,2 is located above the node and another one below it (figure 2c).
(b ) Creating and activating the latent sources of instability by dissipation

Assuming nZkZ0 in expressions (3.3) and (3.4) we find that

Re lC
m1Cm2

4
d

� �2

CU2 Z
ðm1Km2Þ2

16
d2; Im lZb for Re cO0; ð3:9Þ

U2KðIm lKbÞ2 Z ðm1Km2Þ2

16
d2; Re lZK

m1Cm2

4
d for Re c!0: ð3:10Þ

In the three-dimensional space (U, Im l, Re l), the circle of complex eigenvalues
(3.9) belongs to the plane Im lZb, while the hyperbola (3.10) lies in the plane
Re lZKd(m1Cm2)/4, as shown in figures 3a,c and 4a,c.

According to (3.9) the radius of the bubble of instability rb and the distance db

of its centre from the plane Re lZ0 are defined by the eigenvalues m1,2 of D,

rb Z
jðm1Km2Þdj

4
; db Z

jðm1Cm2Þdj
4

: ð3:11Þ

The bubble of complex eigenvalues and hence the branches of the adjacent
hyperbola (3.10) are ‘submerged’ under the surface Re lZ0, when the conditions
dbRrb and dtrDO0 are fulfilled, yielding the positive (semi-)definite matrix dD
Proc. R. Soc. A (2008)
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(a) (b) (c)

Figure 3. Origination of a latent source of subcritical flutter instability in the presence of full
dissipation: (a) submerged bubble of instability, (b) coalescence of eigenvalues in the complex plane
at two exceptional points, and (c) hyperbolic trajectories of imaginary parts.
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of (pervasive) full damping. In the complex plane, the eigenvalues move with the
variation of U along the lines Re lZKdb until they meet at the junction of
the bubble of instability (3.9) with the hyperbola (3.10),

Im lZ b; Re lZKdðm1 Cm2Þ=4; UZGdðm1Km2Þ=4; ð3:12Þ

and form the double eigenvalue with the Jordan chain of two generalized
eigenvectors (exceptional point). With further increase in U the eigenvalues split
in the orthogonal direction, never crossing the imaginary axis (figure 3b).
A similar process of origination of two exceptional points from the semi-simple
eigenvalue (diabolical point) in Hermitian matrices under complex perturbation
with application to crystal optics was described by Berry & Dennis (2003) and
Kirillov et al. (2005).

For the phenomenon of squeal, it is important that the dissipation-induced
bubble of complex eigenvalues, localized in the subcritical interval jUj!Ud, is a
latent source of unstable modes with the frequencies close to the repeated
eigenfrequency Im lZb of the non-rotating system. In the absence of circulatory
forces the radius of the bubble of instability (3.11) is greater than the depth of its
submersion under the surface Re lZ0, only if the eigenvalues m1,2 of D have
different signs. The eigenvalues of the emerged bubble have positive real parts in

the range U2!U2
cr, where UcrZðd=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kdet D

p
, confirming that the negative

friction-velocity gradient as a source of indefinite damping can be a reason for
subcritical flutter and squeal.

The sector-shaped domain of asymptotic stability of system (2.1) with
indefinite damping is defined by the constraints dtrDO0 and U2OU2

cr. Owing to
the singularity at the origin in the plane (d, U), an unstable system with
indefinite damping can be stabilized by sufficiently strong gyroscopic forces, as
shown by the dashed line in figure 5a. With the increase in det D the stability
domain gets wider and for det DO0 it is defined by the condition dtrDO0
(figure 5c). At det DZ0, the line UZ0 does not belong to the domain of
asymptotic stability (figure 5b). Changing the matrix dD from positive definite to
indefinite triggers the state of the bubble of instability from the latent (Re l!0)
to the active one (Re lO0) (figure 4a,c).
Proc. R. Soc. A (2008)
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0

Im

Im Im

Im

Figure 4. The mechanism of subcritical flutter (bold lines): (a) the ring (bubble) of complex
eigenvalues under the surface Re lZ0—a latent source of instability created by dissipation with
det DR0, (b) repulsion of eigenvalue branches of the spectral mesh by non-conservative
perturbations, (c) emersion of the bubble of instability due to indefinite damping with det D!0,
and (d ) collapse of the bubble of instability and immersion and emersion of its parts due to
combined action of dissipative and non-conservative positional forces.
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(c ) Activating the bubble of instability by non-conservative positional forces

In the absence of dissipation, the non-conservative positional forces destroy the
marginal stability of gyroscopic systems (Lakhadanov 1975). Assuming dZkZ0 in
(3.3) and (3.4), we find that the eigenvalues of the branches G(ibCiU) of the
spectral mesh get positive real parts due to a non-conservative perturbation

lGp Z ibGiUG
n

2b
; lGn ZKibGiUH

n

2b
: ð3:13Þ

In contrast to the effect of indefinite damping, the circulatory forces destabilize one
of the two modes at every U (figure 4b). In order to localize the instability in the
vicinity of the nodes, a combination of circulatory and dissipative forces is required.
Proc. R. Soc. A (2008)
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(b)

0

(c)

0

Figure 5. Approximation to the domain of asymptotic stability (white portion) and its boundary
(bold lines) for the dissipatively perturbed gyroscopic system with tr DO0: (a) detDZ0, (b)
det DO0, and (c) det DO0.

(a)

0

(b)

0

(c)

0

Figure 6. Subcritical flutter caused by the dissipative and circulatory forces: (a) collapse and
emersion of the bubble of instability, (b) excursions of eigenvalues to the r.h.s. of the complex plane
when U increases, and (c) crossing of the imaginary parts.
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With kZ0 in (3.3) and (3.4), we describe the trajectories of the eigenvalues in the
complex plane in the presence of dissipative and non-conservative perturbations

Re lC
tr D

4
d

� �
ðIm lKbÞZUn

2b
: ð3:14Þ

Circulatory forces destroy the merging of modes shown in figure 3, causing the
eigenvalues to move along the separated trajectories. According to (3.13) and
(3.14), the eigenvalues with jIm lj increasing with an increase in jUj move closer to
the imaginary axis than the others, as shown in figure 6b. The non-conservative
perturbation separates the bubble of instability and the adjacent hyperbolic
eigenvalue branches into two non-intersecting curves in the space (U, Im l, Re l)
(figure 4d ). The remnants of the original bubble of instability yield subcritical
flutter at a frequency uKcr!u!uC

cr with the gyroscopic parameter in the range
U2!U2

cr, where

Ucr Z d
trD

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

n2Kd2b2 detD

n2Kd2b2ðtrD=2Þ2

s
; uG

cr Z bG
n

2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

n2Kd2b2 det D

n2Kd2b2ðtrD=2Þ2

s
:

ð3:15Þ
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Figure 7. Domains of asymptotic stability in the space d, n and U for different types of damping: (a)
det D!0, (b) det DZ0, and (c) det DO0.
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Hence, in the presence of the non-conservative positional forces the excursions of
eigenvalues to the r.h.s. of the complex plane shown in figure 6b are possible, even if
the dissipation is full (detDO0).

The first of equations (3.15) approximates the stability boundary in the space
of the parameters d, n and U. Extracting n in (3.15) yields

nZGdb trD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 det DC4U2

d2ðtrDÞ2C16U2

s
: ð3:16Þ

If det DR0 and U is fixed, the formula (3.16) describes two independent curves
in the plane (d, n), intersecting with each other at the origin along the straight lines

nZG
b tr D

2
d: ð3:17Þ

For detD!0 equation (3.16) describes in the plane (d, n) two branches of a closed
loop, self-intersecting at the origin with the tangents (3.17). In the space of the three
parameters, the surface (3.16) is a cone with the ‘8’-shaped loop in a cross section
(figure 7a). Asymptotic stability is inside the two of four pockets of the cone, selected
by the inequality dtrDO0.The singularity at the origin is the degeneration of amore
general configuration found by Kirillov (2007a).

The domain of asymptotic stability bifurcates with the change of sign of detD.
In the case of indefinite damping, an instability gap exists due to the singularity
at the origin (figure 7a). For detDZ0 the gap vanishes in the direction nZ0
(figure 7b). Despite the full dissipation with detDO0 unfolds the singularity, the
memory about the instability gap is preserved in the two folds of the stability
boundary with the locally strong curvature (figure 7c). When both m1O0 and
m2O0, the folds are more pronounced, if one of the eigenvalues is close to zero. If
the eigenvalues m1,2 have different signs, subcritical flutter is possible for any
combination of d and n including the case when the non-conservative positional
forces are absent (nZ0).

Independently on the structure of the matrix D, the primary role of
dissipation is the creation of the bubble of instability. It is submerged below
the surface Re lZ0 in the space (U, Im l, Re l) in the case of full dissipation and
Proc. R. Soc. A (2008)
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partially lies in the domain Re lO0 when damping is indefinite. Non-
conservative positional forces destroy the bubble into two branches and shift
one of them to the region of positive real parts even in the case of full dissipation.
Since the branch remembers the existence of the bubble, the subcritical flutter is
developing near the nodes of the spectral mesh.
4. Example: a rotating circular string

The perturbative approach of §3, modified along the lines of the work (Kirillov &
Seyranian 2004), is applicable to the non-discretized boundary-eigenvalue
problems, associated with the rotating strings, rings, discs and shells in frictional
contact for a wide class of available boundary conditions. We note, however, that
the correct formulation of the boundary conditions for such problems is a
delicate question, which is not resolved yet in full in the existing literature
(see, for example, Spelsberg-Korspeter et al. 2008, submitted).

The eigenvalue behaviour predicted by the analysis of the general two-
dimensional system of §3 was already observed by Hutton et al. (1987), Yang &
Hutton (1995) and Xiong et al. (2002), who studied a rotating disc and a rotating
circular string in a pointwise contact with the stationary load systems.

For simplicity, following Yang & Hutton (1995), we consider a circular string
of displacement W(4, t), radius r and mass per unit length r that rotates with
the speed g and passes at 4Z0 through a massless eyelet generating a constant
frictional follower force F on the string, as shown in figure 8. The circumferential
tension P in the string is assumed to be constant; the stiffness of the spring
supporting the eyelet is K and the damping coefficient of the viscous damper is D;
the velocity of the string in the 4 direction has constant value gr. This a
somewhat artificial system contains, however, the fundamental physics of
interest, i.e. the interaction of rotating flexible medium with a stationary
constraint in which the inertial, gyroscopic and centripetal acceleration effects,
together with the stiffness effects of the medium, are in dynamic equilibrium with
the forces generated by the constraint.
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With the non-dimensional variables and parameters

t Z
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ffiffiffiffiffi
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r
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ffiffiffiffiffi
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; k Z
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P
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P
; d Z

Dffiffiffiffiffiffi
rP

p ; ð4:1Þ

the substitution of w(4, t)Zu(4)exp(lt) into the governing equation and boundary
conditions yields the boundary-eigenvalue problem (Yang & Hutton 1995)

Lu Z l2uC2Ulu 0Kð1KU2Þu 00 Z 0; ð4:2Þ

uð0ÞKuð2pÞZ 0; u 0ð0ÞKu 0ð2pÞZ ldCk

1KU2
uð0ÞC m

1KU2
u 0ð0Þ; ð4:3Þ

where 0Zv4. The non-self-adjoint boundary-eigenvalue problem (4.2) and (4.3)
depends on the speed of rotation (U), and damping (d ), stiffness (k) and friction
(m) coefficients of the constraint. For comparing the eigenvalue movement with
that of §3, some artificialness of the term, corresponding to the non-conservative
positional forces, in the second of the boundary conditions (4.3), discussed by
Yang & Hutton (1995), Tian & Hutton (1999) and O’Reilly & Varadi (2004), is
less important than the presence in (4.3) of all types of the perturbations
involved in the equation (2.1).

Since the unconstrained rotating string is a gyroscopic system, the eigen-
functions of the adjoint eigenvalue problems, corresponding to a purely imaginary
eigenvalue l, coincide. With uZC1exp(4l/(1KU))CC2exp(K4l/(1CU))
assumed as a solution of (4.2) in (4.3), we find the characteristic equation

8l sin
pl

ið1KUÞ sin
pl

ið1CUÞ
eðK2plUÞ=ðU2K1Þ

U2K1
Z 0: ð4:4Þ

The eigenvalues of the eigenvalue problem (4.2), (4.3), formed by the roots of (4.4)

lCn Z inð1CUÞ; lKn Z inð1KUÞ; n2Z; ð4:5Þ

have the eigenfunctions uGnZcosðn4ÞHi sinðn4Þ. The spectral mesh (4.5) in the
plane (U, Im l) is shown in figure 8.

Two eigenvalue branches l3nZ inð1C3UÞ and ldmZ imð1CdUÞ, where 3, dZG1,

intersect each other at the node ðU3d
mn; l

3d
mnÞ with

U3d
mn Z

nKm

mdKn3
; l3dmn Z

inmðdK3Þ
mdKn3

; ð4:6Þ

where the double eigenvalue l3dmn has two linearly independent eigenfunctions

u 3
n Z cosðn4ÞK3i sinðn4Þ; ud

m Z cosðm4ÞKdi sinðm4Þ: ð4:7Þ

Intersections (4.6), corresponding to the forward and backward travelling waves,
occur in the subcritical region (jUj!1) and are marked in figure 8 by open circles.
The filled circles indicate the intersections of the forward and reflected waves
taking place in the supercritical region (jUjO1).

Using the perturbation theory developed by Kirillov & Seyranian (2004, 2005)
and Günther & Kirillov (2006), we find the asymptotic formula for the
eigenvalues originated after the splitting of the double eigenvalues due to
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interaction of the rotating string with the external loading system
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The coefficients f 3dnm are defined by
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while the quantities e3dnm are
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with DUZUKU3d
nm. Taking into account expressions (4.6) and (4.7) yields
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Although formula (4.11) is applicable to any node of the spectral mesh, we
consider only those at UZ0 as the most relevant to the problems of acoustics of
friction. Since in this case mZn and 3ZKd, we find that the double eigenvalue in
splits due to action of gyroscopic forces and an external spring as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2U2C
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16p2n2
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The effect of damping and gyroscopic forces yields
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while circulatory and gyroscopic forces lead to the perturbed eigenvalues with
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2335Subcritical flutter in acoustics of friction
The lower branch of the hyperbola (4.13) passes through the node Im lZn,
while the upper one intersects the axis UZ0 at Im lZnC(k/2pn) in the plane
(U, Im l) (figure 9a). In the two-dimensional case, the reason for such a degenerate
behaviour is zero eigenvalue in the matrix K of external potential forces.

The external damper creates a latent source of subcritical flutter instability
exactly as it happens in two dimensions when D has one zero eigenvalue. Indeed,
the bubble of instability (4.14) together with the adjacent hyperbola (4.15) is
under the plane Re lZ0, touching it at the origin, as shown in figure 9b.

At a distance from the nodes, the action of gyroscopic forces and external
friction deforms the spectral mesh similar to the two-dimensional case. Formal
expansion of (4.17) atU/N shows that the real parts of the perturbed eigenvalues

Re lZG
m

4p
H

m3

128p3n2U2
CoðUK2Þ ð4:18Þ

are close to the lines Gm/(4p), except for the vicinity of the node of the spectral
mesh, where the real parts rapidly tend to zero as

Re lZG
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnmjUj

p
COðU3=2Þ; ð4:19Þ
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demonstrating the cuspidal deviation of the generic splitting picture registered in
figure 9c. Expanding expression (4.16) in the vicinity of UZ0, we find that

Im lZnG
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnmjUj

p
COðU3=2Þ: ð4:20Þ

For U/N the imaginary parts tend to n(1GU). Thus, at UZ0 the double
eigenvalue in does not split due to non-conservative perturbation from the eyelet so
that both the real and imaginary parts of the perturbed eigenvalue branches show a
degenerate crossing, touching at the node (0, n). In two dimensions this would
correspond to the skew-symmetric matrix N with det NZ0, i.e. to Nh0.

Deformation patterns of the spectral mesh obtained by the perturbation
theory and shown in figure 9 qualitatively agree with the results of numerical
calculations for the string (Yang & Hutton 1995) and for the disc (Xiong et al.
2002). They show that the perturbations from a pointwise external source of
potential, damping and friction forces are equally degenerate. Even without the
friction term in (4.3) the degeneracy of the model persists, as is clearly seen from
the comparison of figure 9a,b with figures 2b and 3a. Similar effect was detected
for the rotating disc in a pointwise frictional contact in Hutton et al. (1987),
Xiong et al. (2002) and Spelsberg-Korspeter et al. (submitted). The pointwise
type of a contact as a reason for the degeneracies in the boundary-eigenvalue
problem associated with a tubular cantilever conveying fluid was discussed by
Bou-Rabee et al. (2002).
5. Discussion: how to play a disc brake?

Supporting an attractive thesis by Chan et al. (1994) ‘Flutter instabilities in
brake systems occur primarily as a result of symmetry [breaking]; the frictional
mechanism which has been the subject of much research over the past forty years
is of secondary importance’, the sensitivity analysis of this paper demonstrates
how the nodes of the spectral mesh, situated in the subcritical range, may serve
as the ‘keyboard’ of a rotating elastic body of revolution.

The frictional contact is a source of non-Hamiltonian and symmetry-breaking
perturbations. In the vicinity of the ‘keys’ of the keyboard damping creates
eigenvalue bubbles, which are dangerous by the ability to get positive real parts
in the presence of non-conservative positional forces or even without them, if the
damping is indefinite. The activated bubbles of instability cause subcritical
flutter of a rotating structure, forcing it to vibrate at a frequency close to the
double frequency of the node and at the angular velocity close to that of the node.
The typical scenarios of eigenvalue movement due to specific structure of the
matrices of dissipative and non-conservative forces, revealed in two dimensions,
take place also in distributed models of a rotating circular string and a disc in a
pointwise frictional contact.

An advantage of the sensitivity analysis of the spectral mesh to arbitrary
perturbations is in selecting the generic behaviour of eigenvalues and thus the
generic perturbations yielding flutter or stability. For example, the observed
degeneracy in the movement of eigenvalues of the rotating string and disc
evidences that a pointwise contact leads to the semi-definite perturbation
operators that suppress generic instability mechanism behind the squeal. The
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effect seems to be similar to the so-called Herrmann–Smith paradox of a beam
resting on a uniform Winkler elastic foundation and loaded by a follower force
(Kirillov & Seyranian 2002). Therefore, more correct description of the frictional
contact would take into account the finite dimensions of the pads as well as the
dependence of their characteristics on material coordinates. The size of the
friction pads and their placement with respect to the rotating body should select
the particular node of the spectral mesh that produces an unstable complex
eigenvalue. The selection rules as well as the optimal distribution of the stiffness,
damping and friction characteristics of the pads can be effectively investigated
with the approach developed in this paper.
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grant DFG HA 1060/43-1. The author expresses his gratitude to Prof. P. Hagedorn, Technische
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