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With perfectly balanced gain and loss, dynamical systems with indefinite damping can obey the exact
PT -symmetry being marginally stable with a pure imaginary spectrum. At an exceptional point where
the symmetry is spontaneously broken, the stability is lost via passing through a non-semi-simple 1 : 1
resonance. In the parameter space of a general dissipative system, marginally stable PT -symmetric ones
occupy singularities on the boundary of the asymptotic stability. To observe how the singular surface
governs dissipation-induced destabilization of the PT -symmetric system when gain and loss are not
matched, an extension of recent experiments with PT -symmetric LRC circuits is proposed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The notion of PT -symmetry entered modern physics mainly
from the side of quantum mechanics. Parametric families of non-
Hermitian Hamiltonians having both parity (P) and time-reversal
(T ) symmetry, possess pure real spectrum in some regions of the
parameter space, which questions need for the Hermiticity ax-
iom in quantum theory [1–4]. First experimental evidence of PT -
symmetry and its violation came, however, from classical optics in
media with inhomogeneous in space gain and damping [5,6] and
electrodynamics [7].

PT -symmetric equations of two coupled ideal LRC circuits, one
with gain and another with loss, have the form

z̈ + Dż + Kz = 0, (1)

where dot stands for time differentiation and the real matrix of
potential forces is K = KT > 0 while the real matrix D = DT of the
damping forces is indefinite [7].

For the problem considered in [7], we assume that

D = DPT =
(−δ 0

0 δ

)
, K = KPT =

(
k κ
κ k

)
, (2)

zT = (z1, z2), and δ, κ and k are non-negative parameters. Eigen-
values of DPT have equal absolute values and differ by sign, in-
dicating perfect gain/loss balance in system (1) with matrices (2).
The coordinate change x1 = z1 + iz2, x2 = x∗

1, x3 = ẋ1, and x4 = ẋ2,
where i = √−1 and the asterisk denotes complex conjugation, re-
duces this system to iẋ = Hx, where the Hamiltonian
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H =
⎛
⎜⎝

0 0 i 0
0 0 0 i

−ik κ 0 iδ
−κ −ik iδ 0

⎞
⎟⎠ (3)

is PT -symmetric (PH∗ = HP, P = diag(1,−1,−1,1)) [8,9].
In real electrical networks, additional losses may result in the

indefinite damping matrices that possess both positive and neg-
ative eigenvalues with non-equal absolute values. A systematic
study of dynamical systems (1) with such a general indefinite
damping, has been initiated in [10,11] in the context of distributed
parameter control theory and population biology [12–14]. In [15–
17] gyroscopic stabilization of system (1) was considered, because
negative damping produced by the falling dependence of the fric-
tion coefficient on the sliding velocity, feeds vibrations in rotating
elastic continua in frictional contact, e.g. in the singing wine glass
[18–21]. In [22] a gyroscopic PT -symmetric system with indef-
inite damping was shown to originate in the studies of modu-
lational instability of a traveling wave solution of the nonlinear
Schrödinger equation (NLS) [23]. In nonlinear optics, a challeng-
ing problem of stability of localized solutions (solitons) is related
to the indefinite damping, because stable pulses in dual-core sys-
tems frequently exist far from the conditions that provide a perfect
matching of gain and loss (PT -symmetry) [24,25]. Recent tech-
niques proposed for the stabilization of the solitons in two coupled
perturbed NLSs include introduction of PT -symmetric nonlinear
gain and loss [26] which signs can be periodically switched [27,
28]. Therefore, indefinite damping is a basic model to study how
a localized supply of energy modifies the dissipative structure of a
system [14].

In general, the eigenvalues (λ) of system (1), when it is as-
sumed that z ∼ exp(λt), are complex with positive or negative real
parts corresponding either to growing or decaying in time solu-
tions, respectively. Asymptotic stability means decay of all modes.
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Fig. 1. (a) In the half-space X > 0 of the (k1, X, Y ) space, where X = δ1 + δ2 and Y = δ1 − δ2, a part of the singular surface locally equivalent to the Plücker conoid of degree
n = 1, bounds the domain of asymptotic stability of system (1) with matrices (6) and κ = 0.4 and k2 = 1; PT -symmetric marginally stable systems occupy the red interval
of self-intersection with two exceptional points (EPs) (black dots) at its ends. (b) The top view of the surface. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

A two-dimensional system (1) with D = δD̃ is asymptotically
stable if and only if tr D̃ > 0 and 0 < δ2 < δ2

cr ,

δ2
cr = (tr KD̃ − σ1(K) tr D̃)(tr KD̃ − σ2(K) tr D̃)

−det D̃ tr D̃(tr KD̃ − tr K tr D̃)
, (4)

where σ1(K) and σ2(K) are eigenvalues of K [10,29]. However,
when simultaneously tr D̃ = 0 and tr KD̃ = 0, the spectrum of the
system (1) is Hamiltonian, i.e. its eigenvalues are symmetric with
respect to the imaginary axis of the complex plane [11]. They
are pure imaginary and simple (marginal stability) if and only if
δ2 < δ2

PT ,

δPT = ∣∣√σ1(K) − √
σ2(K)

∣∣(−det D̃)−1/2. (5)

How the marginal stability domain of a indefinitely damped
PT -symmetric system relates to the domain of asymptotic sta-
bility of a nearby dissipative system without this symmetry? The
answer is counterintuitive already for the thresholds (4) and (5).
Our Letter describes mutual location of the two sets, thus linking
the fundamental concepts of modern physics: PT -symmetry [1–4]
and dissipation-induced instabilities [30–32].

2. Potential system with indefinite damping

First, we extend the model (1) with matrices (2) by choosing
the matrices of damping and potential forces in the form

D =
(

δ1 0
0 δ2

)
, K =

(
k1 κ
κ k2

)
, (6)

where parameters can take arbitrary positive and negative values.
For asymptotic stability it is necessary that tr D > 0 and det K > 0
[29].

Introducing the parameters X = δ1 + δ2 and Y = δ1 − δ2, we use
the Routh–Hurwitz stability threshold (4) where one should equate
the right-hand side to unity and replace the matrix D̃ with that
given in Eq. (6). The result is a quadratic equation for k1. Expand-
ing k1(X) in the vicinity of X = 0, yields a linear approximation to
the threshold of asymptotic stability in the (k1, X) plane

k1 = k2+1

4

X

Y

[
Y 2 ±

√(
Y 2−Y −

PT
2)(

Y 2−Y +
PT

2) ]
. (7)

Y ±
PT = 2(

√
σ2(K) ± √

σ1(K) ), where σ1 = k2 − κ and σ2 =
k2 + κ are eigenvalues of the matrix K from Eq. (6) in which
k1 = k2 that happens when X = 0, i.e. δ1 = −δ2. Therefore, on the

line defined by the equations k1 = k2 and X = 0 in the (k1, X, Y )

space, system (1) with the matrices (6) is reduced to the PT -
symmetric system with matrices (2) that is marginally stable on
the interval −Y −

PT < Y < Y −
PT , cf. Eq. (5).

In Fig. 1(a) the vertical red line denotes this interval with
Y −
PT � 0.817 calculated for k2 = 1 and κ = 0.4. Along it PT -

symmetry is exact, i.e. eigenvectors are also PT -symmetric [1–4].
Hence, the spectrum is pure imaginary, see Fig. 2. The ends of the
interval are exceptional points (EPs) [33] corresponding to the merg-
ing of a pair of pure imaginary eigenvalues into a double one with
the Jordan block. Passing through these points of the non-semi-
simple 1 : 1 resonance with the increase of |Y | is accompanied
by the spontaneous breaking of the PT -symmetry of eigenvectors
although the system still obeys the symmetry. This causes bifurca-
tion of the double pure imaginary eigenvalues into complex ones
with negative and positive real parts and oscillatory instability or

flutter when Y −
PT

2
< Y 2 < Y +

PT
2

, see Fig. 2(a). The bifurcation at

Y 2 = Y +
PT

2
makes all the eigenvalues real of both signs (static in-

stability or divergence).
What happens with the stability near the red line in Fig. 1(a)?

Fig. 2(b) shows that, e.g. at the fixed k1 = 1.2 and X = 0.2, the
eigencurves connected at the EPs with Y = ±Y −

PT in Fig. 2(a), un-
fold into two non-intersecting loops in the (Reλ, Imλ, Y ) space,
manifesting an imperfect merging of modes [34] owing to gain/loss
imbalance.

Now the stability is lost not via the passing through the non-
semi-simple 1 : 1 resonance but because of migration of a pair of
simple complex-conjugate eigenvalues from the left- to right-hand
sides of the complex plane at |Y | < Y −

PT � 0.817. For example,
tending the parameters to the point (1,0) in (k1, X) plane along
a ray, specified by the equation X = k1 − 1, we find that the
thresholds of asymptotic stability converge to the limiting values
of Y+ � 0.615 < 0.817 and Y− � −0.531 > −0.817, see Fig. 2(c, d).
The limits vary with the change of the slope of the ray. There-
fore, infinitesimal imperfections in the loss/gain balance and in the
potential, destroying the PT -symmetry, can significantly decrease
the interval of asymptotic stability with respect to the marginal
stability interval.

Such a paradoxical finite jump in the instability threshold
caused by a tiny variation in the damping distribution, typically
occurs in dissipatively perturbed autonomous Hamiltonian or re-
versible systems [29,35] of structural and contact mechanics [30,
32,34] and hydrodynamics [36–38], as well as in periodic non-
autonomous ones [39]. We have just described a similar effect
when the marginally stable system is dissipative but obeys PT -
symmetry.
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Fig. 2. Evolution of eigenvalues of system (1) with matrices (6) where κ = 0.4 and k2 = 1. (a) The loops of pure imaginary eigenvalues (dark grey) between the EPs marked
by green dots imply marginal stability of the PT -symmetric system corresponding to k1 = 1 and X = 0. (b) Unfolding the EPs of the unbalanced dissipative system with
k1 = 1.2 and X = 0.2 and (c, d) its growth rates as functions of Y (red curves). The growth rates vanish at the lower values of Y not converging to the locations of the
EPs of the PT -symmetric system (red dots on a green curve) when k1 → 1 and X → 0 along a ray in the (k1, X) plane (the destabilization paradox [29,31,32,42]). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

A reason for the dependence of the limiting critical value of Y
on the direction of approach follows from the linear approxima-
tion (7), which defines two straight lines orthogonal to the Y -axis.
When Y changes from −Y −

PT to Y −
PT , the straight lines (7) ro-

tate around the Y -axis. We remind that a set of points swept by a
moving straight line is called a ruled surface [40,41]. A right conoid
is a ruled surface generated by a family of straight lines that all in-
tersect orthogonally a fixed straight line (the Y -axis in our case).
Therefore, Eq. (7) defines a right conoid in the (k1, X, Y )-space. In
order to identify its type, we observe that Eq. (7) results in a cu-
bic equation for Y . The third-degree term in it can be neglected
when |Y | < Y −

PT . Resolving the remaining quadratic equation and
introducing the polar coordinates (ρ,φ) in the (k1, X) plane as
k1 = k2 + ρ cosφ and X = ρ sinφ√

k2
, we find a parametric surface

(ρ,φ) �→
(

k2 + ρ cosφ,
ρ sinφ√

k2
,

2κ√
k2

sinφ

)
. (8)

This is a canonical equation for the special type of the right conoid
known as the Plücker conoid of degree 1 — a singular surface with
one horizontal and one vertical interval of self-intersection [40,41].
The latter has at its ends two Whitney umbrella singularities [42–
44].

Near the interval −Y −
PT � Y � Y −

PT shown in red in Fig. 1(a),
the boundary of asymptotic stability given by Eq. (4) converges to
the Plücker conoid (7), which is its exact linear approximation. The
latter, in turn, is approximated by the ruled surface (8) that is in
a canonical form for the Plücker conoid. Qualitatively, all the three
surfaces have the same singularities visible in Fig. 1.

The approximation of type (8) can also be obtained from the
perturbation formulas for splitting double semi-simple eigenval-
ues ±ik2 (diabolical points) corresponding to κ = 0, k1 = k2 and
δ1,2 = 0, see [20,21]. The Plücker conoid of degree 1 singularity on
the boundary of the asymptotic stability domain generically occurs

as a result of the unfolding of the semi-simple 1 : 1-resonance [29,
40].

The PT -symmetric marginally stable system studied in [7], oc-
cupies a common ‘handle’ of the two Whitney umbrellas on the
Plücker conoid surface. The surface forms an instability threshold
for the nearby systems with the gain/loss mismatch and additional
coupling in the matrix of potential forces. These imperfections are
realizable in the physical LRC circuits. This opens a way for the
experimental investigation of dissipation-induced instabilities and
related paradoxes that are common for very different dynamical
systems [30,42]. Indeed, since the singular geometry behind the
destabilization paradox in dissipatively perturbed Hamiltonian, re-
versible, and PT -symmetric systems is the same, the experiments
with the near-PT -symmetric LRC circuits promise to be an effi-
cient alternative to the mechanical ones. Development of the latter
is restrained in particular by insufficient so far accuracy in damp-
ing identification.

3. Gyroscopic system with indefinite damping

Taking into account commercial availability of gyrators — the
non-reciprocal elements of LRC circuits that model gyroscopic ef-
fects [45–48] — it should be possible to extend the experiments
described in [7] to the gyroscopic systems with the indefinite
damping [15].

Consider a system with two degrees of freedom

z̈ + (D + 2ΩJ)ż + (
K + (ΩJ)2)z = 0, (9)

where J is a matrix of gyroscopic forces with the entries j11 =
j22 = 0 and j21 = − j12 = 1, Ω is a gyroscopic parameter, and D
and K are matrices of damping and potential forces. Eq. (9) de-
scribes stability of a particle in a rotating saddle trap and flexible
shafts in the classical rotor dynamics and arises in the theories
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Fig. 3. Imaginary and real parts of the eigenvalues of the gyroscopic system (9) as functions of the damping parameter δ1 for k1 = 1, Ω = 0.3 and (a, b) κ = 0, δ2 = −δ1

(PT -symmetric case), (c, d) κ = 0.1, δ2 = −0.3.

Fig. 4. (a) The domain of asymptotic stability and its boundary for the gyroscopic system (9) in the (κ, X, Y )-space when k1 = 1 and Ω = 0.3. The vertical red interval of
self-intersection corresponds to the domain of marginal stability of the PT -symmetric gyroscopic system with the indefinite damping. (b) The top view of the stability
boundary. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

of helical quadrupole magnetic focussing systems of accelerator
physics and light propagation in liquid crystals [22,49–52].

When D = diag(δ1,−δ1) and K = diag(k1,k1), the system (9) is
invariant under transformations t ↔ −t and z1 ↔ z2, i.e. it is PT -
symmetric [7].

Assume D = diag(δ1, δ2) and K = diag(k1,k1 + κ). In Fig. 3
we plot the imaginary and real parts of the eigenvalues as func-
tions of δ1. When δ2 = −δ1 and κ = 0, the spectrum is symmet-
ric with respect to the imaginary axis of the complex plane and
demonstrates a typical for the PT -symmetric system behavior, see
Fig. 3(a, b). Detuning the gain and loss as well as the potential,
unfolds the EPs and creates an interval of the asymptotic stabil-
ity that is smaller than the interval of the marginal stability, see
Fig. 3(c, d).

With the parameters X = δ1 + δ2, and Y = δ1 − δ2, we plot
the Routh–Hurwitz threshold for the asymptotic stability of sys-

tem (9) in the (κ, X, Y ) space in Fig. 4. Again, the surface is locally
equivalent to the Plücker conoid. PT -symmetric marginally stable
systems live on the vertical interval of self-intersection terminated
by two exceptional points. The Whitney umbrella singularities at
the EPs are responsible for the dissipation-induced enhancement
of the Benjamin–Feir modulational instability found in [23].

4. Example. Dissipatively enhanced modulational instability

A monochromatic plane wave with a finite amplitude propagat-
ing in a dispersive medium can be disrupted into a train of short
pulses when the amplitude exceeds some threshold. This process
develops due to an unbounded increase in the percentage modu-
lation of the wave, i.e. instability of the carrier wave with respect
to modulations. This is a fundamental for modern fluid dynamics,
nonlinear optics and plasma physics modulational instability [53].
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This instability, discovered by Bespalov and Talanov and Benjamin
and Feir [54,55], can trigger formation of the breather-type solitons
from the Stokes waves in deep water. The breathers are associ-
ated with the rogue waves, recently detected in a water wave
tank [56].

The modulational instability can be enhanced with additional
dissipation [23]. Below we show that this effect is rooted in the
mutual location of PT -symmetric gyroscopic systems with indefi-
nite damping with respect to general dissipative ones.

Without dissipation, a slowly varying in time envelope A of the
rapidly oscillating carrier wave is often described by the nonlinear
Schrödinger equation (NLS)

i At + αAxx + γ |A|2 A = 0, (10)

where α and γ are positive real numbers, i = √−1, and the mod-
ulations are restricted to one space dimension x [23,53]. Eq. (10)
has a solution in the form of a monochromatic wave

A = A0eikx−iωt, (11)

where the frequency of the modulation, ω, depends on the am-
plitude A0 = u0

1 + iu0
2 and spacial wavenumber k as ω = αk2 −

γ ‖u0‖2 with uT
0 = (u0

1, u0
2).

We linearize the NLS about the basic traveling wave solu-
tion (11) in order to study stability of the modulation. Assuming
periodic in x perturbations with the wavenumber σ we substi-
tute their Fourier expansions into the linearized problem. Then,
the σ -dependent modes decouple into four-dimensional subspaces
for each harmonic with the number n, so that for n = 1 we
get [23]

Jv̇ + 2αkσ Jw − ασ 2v + 2γ u0uT
0 v = 0,

Jẇ − 2αkσ Jv − ασ 2w + 2γ u0uT
0 w = 0, (12)

where dot indicates time differentiation and the dyad u0uT
0 is

a 2 × 2 symmetric matrix. Eq. (12) can be transformed to that
of the indefinitely damped gyroscopic system (9) with Ω =
ασ 2 − γ ‖u0‖2, D = 2γ (u0uT

0 J − Ju0uT
0 ), and K = (4α2k2σ 2 +

γ 2‖u0‖4)I, where I is a unit matrix, which is PT -symmetric be-
cause the eigenvalues ±2γ ‖u0‖2 of the matrix D differ by sign
only [22]. This implies that the spectrum of the system (12) is
Hamiltonian, i.e. symmetric with respect to both real and imag-
inary axes of the complex plane [11,23,53], with the eigenval-
ues

λ = ±i2αkσ ± iσ
√

2αγ
(‖u0‖2

i − ‖u0‖2
)
, (13)

where

‖u0‖2
i = ασ 2

2γ
. (14)

At small amplitudes of the modulation, the eigenvalues are pure
imaginary. With the increase in the amplitude, the modes with
the opposite Krein signature collide at the threshold ‖u0‖ = ‖u0‖i
[23]. At ‖u0‖ > ‖u0‖i the double pure imaginary eigenvalue splits
into complex-conjugate eigenvalues, one of which with positive
real part, that corresponds to the modulational instability in the
ideal (undamped) case [23,53].

Introducing into Eq. (10) the dispersive and nonlinear losses
with the coefficients a and c, respectively, we arrive at the
dissipatively-perturbed NLS [23–25]

i At + (α − ia)Axx + (γ + ic)|A|2 A = 0, (15)

which after linearization and use of Fourier expansions yields the
reduced system [23]

Jv̇ + 2αkσ Jw − ασ 2v + 2γ u0uT
0 v + 2kaσw + aσ 2Jv

+ 2cuT
0 vJu0 = 0,

Jẇ − 2αkσ Jv − ασ 2w + 2γ u0uT
0 w − 2kaσv + aσ 2Jw

+ 2cuT
0 wJu0 = 0. (16)

When a = 0 and c = 0, Eqs. (16) coincide with the ideal sys-
tem (12).

Writing the Routh–Hurwitz conditions for the characteristic
polynomial of the system (16), we find an expression for the
threshold of the modulational instability in the presence of dis-
sipation

2c2(ca − γ α)‖u0‖6 + (
4σ 2ca(ca − γ α)

− 4a2k2(γ 2 + c2) + c2σ 2(a2 + α2))‖u0‖4

+ 2aσ 2(ασ 2(αc − γ a) + 2σ 2ca2 + 4ak2(γ α − ca)
)‖u0‖2

+ a2σ 4(σ 2 − 4k2)(a2 + α2) = 0. (17)

The threshold equation (17) yields a linear approximation to the
stability boundary in the (a, c) plane of the coefficients of disper-
sive and nonlinear losses [23]

c = σ

‖u0‖2

[
−σ ± k(2‖u0‖2

i − ‖u0‖2)

‖u0‖i

√
‖u0‖2

i − ‖u0‖2

]
a + o(a). (18)

When a 
 c, a simple approximation follows from Eq. (18) to the
amplitude at the threshold of the modulational instability in the
presence of dissipation

‖u0‖d � ‖u0‖i − 1

2

k2σ 2

‖u0‖3
i

a2

c2
� ‖u0‖i . (19)

Note that Eq. (19) is in the canonical for the Whitney umbrella
form Z = X2/Y 2 [41].

In Fig. 5(a) the threshold (17) is shown in the (a, c,‖u0‖)
space. At ‖u0‖ = ‖u0‖i and a = 0 and c = 0 it has the Whitney
umbrella singularity at the exceptional point; along the interval
‖u0‖ � ‖u0‖i the system is PT -symmetric with pure imaginary
spectrum. Below the surface (17) when a > 0 and c > 0 the dis-
sipative system (16) with the broken PT -symmetry is asymptoti-
cally stable. In Fig. 5(b) the cross-sections of the stability boundary
(17) are shown for a = 0 (green line) and a = 0.1 (red line) in the
(c,‖u0‖) plane. The domain of modulational instability that was
above the green line in Fig. 5(b) when a = 0 expands consider-
ably below this line (grey area) when the coefficient of dispersive
losses a �= 0 (enhancement of the modulational instability with dissi-
pation [23]). Fig. 5(c) shows the cross-sections of the surface (17)
in the (a, c) plane for ‖u0‖ = ‖u0‖i (green line) and when ‖u0‖ is
slightly above (red line) or below (black line) the amplitude at the
threshold of the modulational instability in the undamped case.
The cross-sections are typical for the surface with the Whitney
umbrella singularity [32]. In particular, they justify the approxi-
mation (18) (blue lines) to the stability boundary that yields the
canonical equation for the Whitney umbrella (19).

5. Summary

A direct link is established between the PT -symmetry and
dissipation-induced instabilities: The systems with the exact PT -
symmetry are identified with the singularities on the threshold of
asymptotic stability of the indefinitely damped ones. This finding
opens a new perspective for PT -symmetric LRC circuit exper-
iments that could test the both fundamental physical concepts,
which is so far unavailable in the mechanical experiments. As an
example, the enhancement of the modulational instability with
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Fig. 5. (a) The boundary between the domains of asymptotic stability and modulational instability in the (a, c,‖u0‖) space when σ = 1, α = 1, γ = 1, and k = 1. (b) In

(c,‖u0‖) plane the cross sections of the boundary at (green) a = 0 and (red) a = 0.1. (c) In (a, c) plane the cross sections of the boundary at (green) ‖u0‖ = ‖u0‖i =
√

2
2 ,

(black) ‖u0‖ = ‖u0‖i − 0.05, and (red) ‖u0‖ = ‖u0‖i + 0.05; blue lines is a linear approximation (18). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)

dissipation is connected to the existence of the Whitney umbrella
singularity on the instability threshold.
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