Oleg N. Kirillov

Ph.D, Research Scientist

Helmholtz-Zentrum Dresden-Rossendorf
P.O. Box 510119 D-01314 Dresden

E-mail: o.kirillov@hzdr.de
Homepage: http://onkirillov.com


Projects Degrees Education Employment Publications CV


  • January 2014, Book
    Nonlinear Physical systems: spectral Analysis, Stability and Bifurcations

  • August 2013, Press Releases
    Polit.ru, Computerra, Pravda.ru, ANI News, Red Orbit, Science World Report, HZDR

  • July 2013, Associate Editor
     Frontiers in Physics: Mathematical Physics

  • June 2013, Monograph 
    "Nonconservative Stability Problems of Modern Physics", pdf

  • November 2012, Organizer of a BIRS Workshop on Spectral Analysis, Stability and Bifurcation in Modern Nonlinear Physical Systems, Banff, Canada (with P. Binding, T. Bridges, Y. Fukumoto, I. Hoveijn, and D. Pelinovsky).

  • Projects

    • Standard and helical magnetorotational instability and MHD dynamo

      1. O.N. Kirillov, F. Stefani, Y. Fukumoto, Instabilities in magnetized rotational flows: A comprehensive short-wavelength approach. Journal of Fluid Mechanics, 2014 subm., arXiv:1401.8276v1

      2. O.N. Kirillov, F. Stefani, Y. Fukumoto, Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence. 
      Fluid Dynamics Research
      2013 Vol. 46 No. P.

      3. O.N. Kirillov, F. Stefani, Extending the range of the inductionless magnetorotational instability.
      Physical Review Letters 2013 Vol. 111 No. 6 P. 061103

      4. O.N. Kirillov, F. Stefani, Y. Fukumoto, A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit. 
      The Astrophysical Journal 2012 Vol. 756 No. 83, 6pp. 

      5. O.N. Kirillov, F. Stefani, WKB thresholds of standard, helical, and azimuthal magnetorotational instability.
      Proceedings of the International Astronomical Union, 2012 Vol. 8. P. 233-234.

      6. O.N. Kirillov, F. Stefani, Standard and helical magnetorotational instability: How singularities create paradoxical phenomena in MHD. Acta Applicandae Mathematicae 2012 Vol. 120 No. 1 P. 177-198.

      7. O.N. Kirillov, D.E. Pelinovsky, G. Schneider, Paradoxical transitions to instabilities in hydromagnetic Couette-Taylor flows.
      Physical Review E (Rapid communication) 2011 Vol. 84 No. 6 P. 065301(R)

      8. O.N. Kirillov, F. Stefani, Paradoxes of magnetorotational instability and their geometrical resolution. Physical Review E 2011. Vol. 84 No. 3 P. 036304

      9. Kirillov O.N., Stefani F. On the relation of standard and helical magnetorotational instability. The Astrophysical Journal, 2010. Vol. 712 P. 52-68

      10. Kirillov O.N., Guenther U., Stefani F. Determining role of Krein signature for three dimensional Arnold tongues of oscillatory dynamos. Physical Review E, 2009. Vol. 79. No. 1 016205

      11. Guenther U., Kirillov O.N., Samsonov B.F., Stefani F. The spherically - symmetric alpha^2-dynamo and some of its spectral peculiarities. 
      Acta Polytechnica.
      2007. Vol. 47 No. 2–3. P. 75-81.

      12. Guenther U., Kirillov O.N. A Krein space related perturbation theory for MHD alpha-2 dynamos and resonant unfolding of diabolical points. Journal of Physics A: Mathematical and General. 2006. Vol. 39. P. 10057-10076.

    • Non-Hermitian physics, exceptional points, Berry phase, and PT-symmetry

      1. O.N. Kirillov. Stabilizing and destabilizing perturbations of PT -symmetric indefinitely damped systems.
      Phil Trans R Soc A 2013 Vol. 371 P. 20120051

      2. O.N. Kirillov, Exceptional and diabolical points in stability questions. 
      Fortschritte der Physik - Progress in Physics, 2013 Vol. 61 No. 2-3, P. 205-224

      3. O.N. Kirillov, PT-symmetry, indefinite damping and dissipation-induced instabilities. Physics Letters A  2012 Vol. 376 No. 15 P. 1244-1249.

      4. B. Dietz, H. L. Harney, O.N. Kirillov, M. Miski-Oglu, A. Richter, F. Schaefer, Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation. Physical Review Letters 2011. Vol. 106. No. 15. P. 150403

      5. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Berry phase around degeneracies. Doklady Mathematics. 2006. Vol. 73. No. 1. P. 129-133. 

      6. Kirillov O.N., Mailybaev A.A., Seyranian A.P. Singularities of energy surfaces under non-Hermitian perturbations. Doklady Physics. 2005. Vol. 50. No. 11. P. 577-582. 

      7. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Geometric phase around exceptional points. Physical Review A. 2005. Vol. 72., 014104.

      8. Kirillov O.N., Mailybaev A.A., Seyranian A.P. Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation. Journal of Physics A: Mathematical and General. 2005. Vol. 38. No. 24. P. 5531–5546.

      9. Seyranian A.P., Kirillov O.N., Mailybaev A.A. Coupling of eigenvalues of complex matrices at diabolic and exceptional points. Journal of Physics A: Mathematical and General. 2005. Vol. 38. No. 8. P. 1723-1740.

    • Dissipation-induced instabilities and destabilization paradox

      1. O.N. Kirillov, M.L. Overton, Robust stability at the swallowtail singularity. Frontiers in Physics, 2013 Vol. 1, No. 24, P. 1-9.

      2. O.N. Kirillov, F. Verhulst, Dissipation-induced instabilities and symmetry. 
      Acta Mechanica Sinica 2011. Vol. 27. No. 1. P. 2-6. 

      3. Hoveijn I., Kirillov O.N. Singularities on the boundary of the stability domain near 1:1-resonance. Journal of Differential Equations, 2010. Vol. 248 No. 10 P. 2585–2607.

      4. Kirillov O.N., Verhulst F. Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella? Z. angew. Math. Mech. 2010. Vol. 90, No. 6, P. 462 – 488. (Editor's choice)

      5.  Verhulst F, Kirillov O.N., Bottema opende Whitney’s paraplu, Nieuw Archief voor Wiskunde, 2009. Vol. 5/10, No.4, P. 250-254. 

      6. Kirillov O.N. Gyroscopic stabilization in the presence of nonconservative forces. Doklady Mathematics. 2007. Vol. 76. No. 2. P. 780-785.

      7. Kirillov O.N. Bifurcation of the roots of the characteristic polynomial and destabilization paradox in friction induced oscillations. Theoretical and Applied Mechanics 2007 Volume 34, Issue 2, 87-109.

      8. Kirillov O.N. On the stability of nonconservative systems with small dissipation. Journal of Mathematical Sciences. 2007. Vol. 145, No. 5. P. 5260-5270. 

      9. Kirillov O.N. Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. International Journal of Non-Linear Mechanics. 2007. Vol. 42. No. 1. P. 71-87.

      10. Kirillov O.N. Gyroscopic stabilization of non-conservative systems. Physics Letters A. 2006. Vol. 359. No. 3. P. 204-210.

      11. Kirillov O.N., Seyranian A.P. Instability of distributed nonconservative systems caused by weak dissipation. Doklady Mathematics. 2005. Vol. 71. No. 3. P. 470-475.

      12. Kirillov O.N., Seyranian A.P. The effect of small internal and external damping on the stability of distributed non-conservative systems. J. Appl. Math. Mech. 2005. Vol. 69. No. 4. P. 529-552.

      13. Kirillov O.N. A theory of the destabilization paradox in non-conservative systems. Acta Mechanica. 2005. Vol. 174. No. 3-4. P. 145-166. 

      14. Kirillov O.N., Seyranian A.P. Stabilization and destabilization of a circulatory system by small velocity-dependent forces. Journal of Sound and Vibration. 2005. Vol. 283. No. 3-5. P. 781-800.

      15. Kirillov O.N. Destabilization paradox. Doklady Physics. 2004. Vol. 49. No. 4. P. 239-245. 

      16. Seyranian A.P., Kirillov O.N. Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems. Doklady Physics. 2003. Vol. 48.  No. 12. P. 679-684.

      17. Kirillov O.N. How do small velocity-dependent forces (de)stabilize a non-conservative system? DCAMM Report. No. 681. April 2003. 40 pages. 

    • Non-conservative rotor dynamics, friction-induced instabilities, acoustics of friction and brake squeal

      1. O.N. Kirillov, Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics. Physics Letters A 2011. Vol. 375 P. 1653–1660. 

      2. O.N. Kirillov, Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications. 
      Int. J. Vehicle Struct. Syst.
      2011. Vol. 3. No. 1. P. 1-13.

      3. Kirillov O.N. Campbell diagrams of weakly anisotropic flexible rotors, 
      Proc. of the Royal Society A
      2009. Vol. 465, No. 2109, P. 2703-2723.

      4. Kirillov O.N. Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems, 
      Physics Letters A
      . 2009. Vol. 373, No.  10, P. 940–945. 

      5. Kirillov O.N. Perspectives and obstacles for optimization of brake pads with respect to stability criteria. Int. J. of Vehicle Design, 2009. Vol. 51, Nos. 1/2, P. 143–167.

      6. Kirillov O.N. How to play a disc brake: A dissipation-induced squeal. 
      SAE Int. J. Passeng. Cars - Mech. Syst.
      2009. Vol. 1 No. 1, P. 863-876.

      7. Spelsberg-Korspeter G., Hochlenert D., Kirillov O.N., Hagedorn P. 
      In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena. Trans. ASME, J. Appl. Mech. 2009. Vol. 76. No. 4, 041006, P. 1-15.

      8. Kirillov O.N. Subcritical flutter in the acoustics of friction. Proceedings of the Royal Society A 2008. Vol. 464. No. 2097. P. 2321–2339.

      9. Spelsberg-Korspeter G., Kirillov O.N., Hagedorn P. Modeling and stability analysis of an axially moving beam with frictional contact. Trans. ASME, J. Appl. Mech. 2008. Vol. 75. No. 3, 031001 P. 1-10. 

    • Perturbation of non-self-adjoint boundary eigenvalue problems

      1. Kirillov O.N. Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices, Z. angew. Math. Phys. 2010. Vol. 61 No. 2 P. 221-234.

      2.  Kirillov O.N., Seyranian A.P. Collapse of the Keldysh chains and stability of continuous non-conservative systems. SIAM Journal on Applied Mathematics. 2004. Vol. 64. No. 4. P. 1383-1407.

      3. Kirillov O.N., Seyranian A.P. Collapse of Keldysh chains and the stability of non-conservative systems. Doklady Mathematics. 2002. Vol. 66. No. 1. P. 127-131. 

    • Stability and parametric optimization of circulatory systems

      1. O.N. Kirillov, N. Challamel, F. Darve, J. Lerbet, F. Nicot, Singular divergence instability thresholds of kinematically constrained circulatory systems.
      Physics Letters A, 2014 Vol. 378 P. 147-152

      2. J. Lerbet, M. Aldowaji, N. Challamel, O.N. Kirillov, F. Nicot, F. Darve, Geometric degree of non-conservativity.
      Mathematics and Mechanics of Complex Systems, 2013

      3. J. Lerbet, O. Kirillov, M. Aldowaji, N. Challamel, F. Nicot, F. Darve
      Additional constraints may soften a non-conservative structural system: Buckling and vibration analysis. 
      International Journal of Solids and Structures
      , 2013 Vol. 50.  P. 363–370

      4. O. N. Kirillov, Singularities in Structural Optimization of the Ziegler Pendulum,
      Acta Polytechnica 2011. Vol. 51. No. 4. P. 32-43.

      5. Kirillov O.N., Seyranian A.P. Solution to the Herrmann-Smith problem. 
      Doklady Physics.
      2002. Vol. 47.  No. 10. P. 767-771. 

      6. Kirillov O.N., Seyranian A.P. Metamorphoses of characteristic curves in circulatory systems. J. Appl. Math. Mech. 2002. Vol. 66. No. 3. P. 371-385. 

      7. Kirillov O.N., Seyranian A.P. A non-smooth optimization problem.
      Moscow University Mechanics Bulletin. 2002. Vol. 57. No. 3. P. 1-6. 

      8. Seyranian A.P., Kirillov O.N. Bifurcation diagrams and stability boundaries of circulatory systems. Theoretical and Applied Mechanics. 2001. Vol. 26. P. 135-168. 

      9. Kirillov O.N., Seyranian A.P. Overlapping of frequency curves in non-conservative systems. Doklady Physics. 2001. Vol. 46. No. 3. P. 184-189.

      10. Kirillov O.N. Optimization of stability of the flying bar. Young Scientists Bulletin. Appl. Maths Mechs. 1999. Vol. 1 No.1 P. 64-78.



    Ph.D., 2000 Theoretical Mechanics
    Moscow State Lomonosov University,
    Faculty of Mathematics and Mechanics, Department of Applied Mechanics and Control
    M.S., 1995
    Diploma cum laude
    Applied Mathematics and Theoretical Physics
    MIPT, Faculty of Aerophysics and Space Research
    B.Sc., 1993
    Diploma cum laude
    Applied Mathematics and Theoretical Physics
    Moscow Institute of Physics and Technology (MIPT), 
    Faculty of Aerophysics and Space Research
    Diploma, 1989
    Silver Medal 
    UNESCO Associated School No. 50 with Advanced Study of Physics and Mathematics, Minsk


    1996-1999 Graduate, Moscow State Lomonosov University 
    1989-1995 Undergraduate, Moscow Institute of Physics and Technology 
    1979-1989 High School, Minsk


    2006-2007 Alexander von Humboldt Research Fellow, Technical University of Darmstadt, Germany
    2005-2006 Alexander von Humboldt Research Fellow, University of Hannover, Germany
    Jul. 10-12, 2005 Visiting researcher at the Forschungszentrum Rossendorf, Dresden, Germany
    Sep. 2004 Visiting researcher at the University of Belgrade, Serbia and Montenegro
    Sep. 2004 Visiting researcher at the University of Novi Sad, Serbia and Montenegro
    July 2004 Visiting researcher at the Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Lyngby, Denmark.
    July 2004 Visiting researcher at the Institute of Mechanics of the University of Hannover, Germany
    Nov.-Dec. 2003 Visiting researcher at the  Dalian University of Technology, China 
    Nov. 2002 Visiting researcher at the KTH-Royal Institute of Technology, Stockholm, 
    Oct.-Nov. 2002 Visiting researcher at the Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Lyngby, Denmark.
    Sep. 2-6. 2002  Visiting researcher at the Dalian University of Technology, China
    Feb.-Mar. 2002 Visiting researcher at the Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Lyngby, Denmark.
    Sept.-Oct. 2000 Visiting researcher at the Dalian University of Technology, China
    1999-pres. Senior Scientist, Institute of Mechanics, Moscow State Lomonosov University
    1996-1997  Graduate, Laboratory of Applied Mechanics, 
    Faculty of Mechanics and Mathematics, Moscow State Lomonosov University
    1995-1996  Engineer-Mathematician, S.P. Korolev Rocket & Space Corporation Energia

    Copyright ã 2001-2008 by Oleg & Ksenia Kirillov


    Locations of visitors to this page

    Visitor Map