List of Publications of Dr. Oleg N. Kirillov Printing version

Journal Papers Preprints Proceedings Dissertation Conferences

 

Books:
 
    
   
Oleg N. Kirillov
        Nonconservative Stability Problems of Modern Physics
        (2013), De Gruyter, Berlin, Boston

       
Oleg N. Kirillov and Dmitry E. Pelinovsky (eds)
        Nonlinear Physical Systems: Spectral Analysis, Stability, and  
        Bifurcations (2014), ISTE-Wiley, London


Journal Papers
:

  1. O.N. Kirillov, F. Stefani, Y. Fukumoto, Instabilities in magnetized rotational flows: A comprehensive short-wavelength approach. Journal of Fluid Mechanics, 2014 subm., arXiv:1401.8276v1, (PDF)

  2. O.N. Kirillov, F. Stefani, Y. Fukumoto, Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence. 
    Fluid Dynamics Research
    2014 Vol. 46 No. P.

  3. O.N. Kirillov, N. Challamel, F. Darve, J. Lerbet, F. Nicot, Singular divergence instability thresholds of kinematically constrained circulatory systems.
    Physics Letters A, 2014 Vol. 378 P. 147-152

  4. J. Lerbet, M. Aldowaji, N. Challamel, O.N. Kirillov, F. Nicot, F. Darve, Geometric degree of non-conservativity.
    Mathematics and Mechanics of Complex Systems, 2013

  5. O.N. Kirillov, M.L. Overton, Robust stability at the swallowtail singularity. Frontiers in Physics, 2013 Vol. 1, No. 24, P. 1-9. (PDF)

  6. O.N. Kirillov, F. Stefani, Extending the range of the inductionless magnetorotational instability.
    Physical Review Letters 2013 Vol. 111 No. 6 P. 061103 (PDF)

  7. O.N. Kirillov. Stabilizing and destabilizing perturbations of PT -symmetric indefinitely damped systems.
    Phil Trans R Soc A 2013 Vol. 371 P. 20120051 (PDF)

  8. J. Lerbet, O. Kirillov, M. Aldowaji, N. Challamel, F. Nicot, F. Darve
    Additional constraints may soften a non-conservative structural system: Buckling and vibration analysis. 
    International Journal of Solids and Structures
    , 2013 Vol. 50.  P. 363–370 (PDF

  9. O.N. Kirillov, Exceptional and diabolical points in stability questions. 
    Fortschritte der Physik - Progress in Physics, 2013 Vol. 61 No. 2-3, P. 205-224 (PDF)

  10. O.N. Kirillov, F. Stefani, WKB thresholds of standard, helical, and azimuthal magnetorotational instability. Proceedings of the International Astronomical Union, 2012 Vol. 8. P. 233-234. (PDF)

  11. O.N. Kirillov, F. Stefani, Y. Fukumoto, A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit. 
    The Astrophysical Journal 2012 Vol. 756. No 83. (6pp) (PDF)

  12. O.N. Kirillov, PT-symmetry, indefinite damping and dissipation-induced instabilities. Physics Letters A 2012 Vol. 376. No. 15 P. 1244-1249 (PDF)

  13. O.N. Kirillov, F. Stefani, Standard and helical magnetorotational instability: How singularities create paradoxical phenomena in MHD. Acta Applicandae Mathematicae 2012 Vol. 120. No. 1 P. 177-198. (PDF

  14. O.N. Kirillov, Erratum to: Brouwer's problem on a heavy particle in a rotating vessel: Wave propagation, ion traps, and rotor dynamics [Physics Letters A 375 (2011) 1653-1660] Physics Letters A 2012 Vol 376 P. 665–666 (PDF)

  15. O.N. Kirillov, D.E. Pelinovsky, G. Schneider, Paradoxical transitions to instabilities in hydromagnetic Couette-Taylor flows. Physical Review E (Rapid communication) 2011 Vol. 84 No. 6 P. 065301(R) (PDF)

  16. O.N. Kirillov, F. Stefani, Paradoxes of magnetorotational instability and their geometrical resolution. 
    Physical Review E 2011. Vol. 84 No. 3 P. 036304 (PDF)

  17. O.N. Kirillov, Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics.
    Physics Letters A 2011. Vol. 375 P. 1653–1660. (PDF)

  18. B. Dietz, H. L. Harney, O.N. Kirillov, M. Miski-Oglu, A. Richter, F. Schaefer, Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation. 
    Physical Review Letters
    2011. Vol. 106. No. 15. P. 150403 (PDF)

  19. O.N. Kirillov, F. Verhulst, Dissipation-induced instabilities and symmetry. 
    Acta Mechanica Sinica 2011. Vol. 27. No. 1. P. 2-6. (PDF)

  20. O. N. Kirillov, Singularities in Structural Optimization of the Ziegler Pendulum,
    Acta Polytechnica 2011. Vol. 51 No. 4 P. 32-43. (PDF

  21. O.N. Kirillov, Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications. 
    Int. J. Vehicle Struct. Syst.
    2011. Vol. 3. No. 1. P. 1-13. (PDF)

  22. Kirillov O.N., Stefani F. On the relation of standard and helical magnetorotational instability. 
    The Astrophysical Journal
    , 2010. Vol. 712 P. 52-68 (PDF)

  23. Hoveijn I., Kirillov O.N. Singularities on the boundary of the stability domain near 1:1-resonance. 
    Journal of Differential Equations
    , 2010. Vol. 248 No. 10 P. 2585–2607 (PDF)

  24. Kirillov O.N., Verhulst F. Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella? 
    Z. angew. Math. Mech.
    2010. Vol. 90, No. 6, P. 462 – 488 (PDF- Editor's choice

  25. Kirillov O.N. Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices, 
    Z. angew. Math. Phys. 2010. Vol. 61 No. 2 P. 221-234 (PDF

  26. Verhulst F, Kirillov O.N., Bottema opende Whitney’s paraplu, 
    Nieuw Archief voor Wiskunde, 2009. Vol. 5/10, No.4, P. 250-254. (PDF) Cover
    (Original article by Oene Bottema "The Routh-Hurwitz condition for the biquadratic equation", Indagationes Mathematicae, 18 (1956), 403-406 (PDF))

  27. Kirillov O.N. Campbell diagrams of weakly anisotropic flexible rotors, 
    Proc. of the Royal Society A
    2009. Vol. 465, No. 2109, P. 2703-2723 (PDF)

  28. Kirillov O.N. Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems, 
    Physics Letters A
    . 2009. Vol. 373, No.  10, P. 940–945. (PDF)

  29. Kirillov O.N. Perspectives and obstacles for optimization of brake pads with respect to stability criteria. 
    Int. J. of Vehicle Design
    , 2009. Vol. 51, Nos. 1/2, P. 143–167 (PDF)

  30. Kirillov O.N., Guenther U., Stefani F. Determining role of Krein signature for three dimensional Arnold tongues of oscillatory dynamos. 
    Physical Review E
    , 2009. Vol. 79. No. 1 016205 (PDF) Selected for PRE Kaleidoscope

  31. Kirillov O.N. How to play a disc brake: A dissipation-induced squeal. 
    SAE Int. J. Passeng. Cars - Mech. Syst.
    2009. Vol. 1 No. 1, P. 863-876. (PDF)

  32. Spelsberg-Korspeter G., Hochlenert D., Kirillov O.N., Hagedorn P. 
    In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena. 
    Trans. ASME, J. Appl. Mech.
    2009. Vol. 76. No. 4, 041006, P. 1-15, (PDF)

  33. Kirillov O.N. Subcritical flutter in the acoustics of friction. 
    Proceedings of the Royal Society A
    2008. Vol. 464. No. 2097. P. 2321–2339 (PDF)

  34. Spelsberg-Korspeter G., Kirillov O.N., Hagedorn P. Modeling and stability analysis of an axially moving beam with frictional contact. 
    Trans. ASME, J. Appl. Mech.
    2008. Vol. 75. No. 3, 031001 P. 1-10. (PDF, Top10). 

  35. Kirillov O.N. Gyroscopic stabilization in the presence of nonconservative forces. 
    Doklady Mathematics. 2007. Vol. 76. No. 2. P. 780-785. (PDF). [Zentralblatt]

  36. Kirillov O.N. Bifurcation of the roots of the characteristic polynomial and destabilization paradox in friction induced oscillations. 
    Theoretical and Applied Mechanics
    2007 Volume 34, Issue 2, 87-109 (PDF). [Math. Reviews, Zentralblatt]

  37. Kirillov O.N. On the stability of nonconservative systems with small dissipation. Journal of Mathematical Sciences. 2007. Vol. 145, No. 5. P. 5260-5270. (PDF)
    [Zentralblatt]

  38. Kirillov O.N. Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. 
    International Journal of Non-Linear Mechanics. 2007. Vol. 42. No. 1. P. 71-87. (PDF). [Math. Reviews]

  39. Guenther U., Kirillov O.N., Samsonov B.F., Stefani F. The spherically-symmetric alpha^2-dynamo and some of its spectral peculiarities. 
    Acta Polytechnica.
    2007. Vol. 47 No. 2–3. P. 75-81. (PDF).

  40. Kirillov O.N. Gyroscopic stabilization of non-conservative systems. 
    Physics Letters A
    . 2006. Vol. 359. No. 3. P. 204-210. (PDF). 
    [Zentralblatt]

  41. Guenther U., Kirillov O.N. A Krein space related perturbation theory for MHD alpha-2 dynamos and resonant unfolding of diabolical points. 
    Journal of Physics A: Mathematical and General.
    2006. Vol. 39. P. 10057-10076. (PDF). 
    [Math. Reviews, Zentralblatt]

  42. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Berry phase around degeneracies. Doklady Mathematics. 2006. Vol. 73. No. 1. P. 129-133. (PDF
    [Math. Reviews, Zentralblatt]

  43. Kirillov O.N., Mailybaev A.A., Seyranian A.P. Singularities of energy surfaces under non-Hermitian perturbations. 
    Doklady Physics.
    2005. Vol. 50. No. 11. P. 577-582. (PDF) [Math. Reviews, Zentralblatt]

  44. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Geometric phase around exceptional points. 
    Physical Review A
    . 2005. Vol. 72., 014104. (PDF)

  45. Kirillov O.N., Mailybaev A.A., Seyranian A.P. Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation. 
    Journal of Physics A: Mathematical and General.
    2005. Vol. 38. No. 24. P. 5531–5546. (PDF). [Math. Reviews, Zentralblatt]

  46. Seyranian A.P., Kirillov O.N., Mailybaev A.A. Coupling of eigenvalues of complex matrices at diabolic and exceptional points.
    Journal of Physics A: Mathematical and General. 2005. Vol. 38. No. 8. P. 1723-1740. (PDF). [Math. Reviews, Zentralblatt]

  47. Kirillov O.N., Seyranian A.P. Instability of distributed nonconservative systems caused by weak dissipation. 
    Doklady Mathematics.
    2005. Vol. 71. No. 3. P. 470-475. (PDF). [Math. Reviews, Zentralblatt]

  48. Kirillov O.N., Seyranian A.P. The effect of small internal and external damping on the stability of distributed non-conservative systems. 
    J. Appl. Math. Mech.
    2005. Vol. 69. No. 4. P. 529-552. (PDF). [Math. Reviews, Zentralblatt]

  49. Kirillov O.N. A theory of the destabilization paradox in non-conservative systems. 
    Acta Mechanica.
    2005. Vol. 174. No. 3-4. P. 145-166. (PDF). [Zentralblatt]

  50. Kirillov O.N., Seyranian A.P. Stabilization and destabilization of a circulatory system by small velocity-dependent forces. 
    Journal of Sound and Vibration.
    2005. Vol. 283. No. 3-5. P. 781-800. (PDF). [Math. Reviews].

  51. Kirillov O.N. Destabilization paradox. 
    Doklady Physics.
    2004. Vol. 49. No. 4. P. 239-245. (PDF). [Math. Reviews]

  52. Kirillov O.N., Seyranian A.P. Collapse of the Keldysh chains and stability of continuous non-conservative systems.
    SIAM Journal on Applied Mathematics. 2004. Vol. 64. No. 4. P. 1383-1407. (PDF). 
    [Math. Reviews, Zentralblatt]

  53. Seyranian A.P., Kirillov O.N. Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems. 
    Doklady Physics. 2003. Vol. 48.  No. 12. P. 679-684. (PDF). [Math. Reviews]

  54. Kirillov O.N., Seyranian A.P. Solution to the Herrmann-Smith problem. 
    Doklady Physics.
    2002. Vol. 47.  No. 10. P. 767-771. (PDF). [Math. Reviews]

  55. Kirillov O.N., Seyranian A.P. Metamorphoses of characteristic curves in circulatory systems.
    J. Appl. Math. Mech.
    2002. Vol. 66. No. 3. P. 371-385. (PDF). [Math. Reviews, Zentralblatt]

  56. Kirillov O.N., Seyranian A.P. Collapse of Keldysh chains and the stability of non-conservative systems.
    Doklady Mathematics. 2002. Vol. 66. No. 1. P. 127-131. (PDF). [Math. Reviews, Zentralblatt]

  57. Kirillov O.N., Seyranian A.P. A non-smooth optimization problem.
    Moscow University Mechanics Bulletin. 2002. Vol. 57. No. 3. P. 1-6. (PDF). [Math. Reviews, Zentralblatt]

  58. Seyranian A.P., Kirillov O.N. Bifurcation diagrams and stability boundaries of circulatory systems.
    Theoretical and Applied Mechanics. 2001. Vol. 26. P. 135-168. (PDF). [Math. Reviews]

  59. Kirillov O.N., Seyranian A.P. Overlapping of frequency curves in non-conservative systems.
    Doklady Physics. 2001. Vol. 46. No. 3. P. 184-189. (PDF). [Math. Reviews]

  60. Kirillov O.N. Optimization of stability of the flying bar. 
    Young Scientists Bulletin. Appl. Maths Mechs.
    1999. Vol. 1 No.1 P. 64-78. (PDF).

 

Preprints:

  1. B. Dietz, H. L. Harney, O. N. Kirillov, M. Miski-Oglu, A. Richter, F. Schaefer, Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation. Preprint arXiv:1008.2623, 30 Nov 2010 

  2. Oleg N. Kirillov, Frank Stefani, Paradoxes of magnetorotational instability and their geometrical resolution. arXiv:1104.0677, 4 Apr 2011

  3. Kirillov O.N. Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics. Preprint arXiv:1012.0892 4 Dec 2010

  4. Kirillov Oleg N., Verhulst Ferdinand. Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella? Preprint arXiv:0906.1650

  5. Kirillov O.N. Campbell diagrams of weakly anisotropic flexible rotors. Preprint arXiv:0902.0784v2 [math-ph] 9 Jun 2009

  6. Kirillov O.N., Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems
    Preprint arXiv:0809.3531 [math-ph] 20 Sep 2008.

  7. O.N. Kirillov, U. Guenther, F. Stefani. Determining role of Krein signature for 3D Arnold tongues of oscillatory dynamos. 
    Preprint arXiv:0806.1251v1 [math-ph] 7 Jun 2008.

  8. O.N. Kirillov. Perturbation of multiparameter non-self-adjoint boundary eigenvalue problems for operator matrices. 
    Preprint arXiv:0803.2248v2 [math-ph] 14 Mar 2008.

  9. O.N. Kirillov. How to Play a Disc Brake. 
    Preprint arXiv:0708.0967v2 [math-ph] 7 Aug 2007.

  10. Spelsberg-Korspeter G., Kirillov O.N., Hagedorn P. Modelling and stability analysis of an axially moving beam with frictional contact. TU Darmstadt - UC Berkeley E-Seminar on Applied Mechanics and Engineering Science. February 16, 2007. (PDF)

  11. Guenther U., Kirillov O.N., Samsonov B.F., Stefani F. The spherically-symmetric alpha^2-dynamo and some of its spectral peculiarities. 
    Preprint arXiv:math-ph/0703041, 2007. (PDF)

  12. Kirillov O.N. Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. 
    TU Darmstadt - UC Berkeley E-Seminar on Applied Mechanics and Engineering Science. July 10, 2006. (PDF)

  13. Kirillov O.N., Guenther U. Krein space related perturbation theory for MHD alpha-2 dynamos and resonant unfolding of diabolical points. 
    Preprint arXive:math-ph/0602013, 2006. (PDF)

  14. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Geometric phase around exceptional points.
    Preprint arXive:quant-ph/0501040, 2005.

  15. Kirillov O.N., Mailybaev A.A., Seyranian A.P. Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation. 
    Preprint arXive:math-ph/0411006, 2004.

  16. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Coupling of eigenvalues of complex matrices at diabolic and exceptional points. 
    Preprint arXive:math-ph/0411024, 2004.

  17. Kirillov O.N. How do small velocity-dependent forces (de)stabilize a non-conservative system? 
    DCAMM Report.
    No. 681. April 2003. 40 pages. (PDF)

  18. Seyranian A.P., Mailybaev A.A., Kirillov O.N. Multiparameter stability problems. 
    Moscow State Lomonosov Univ., Institute of Mechanics. Technical Report # 4706. 2003. 30 p.

  19. Kirillov O.N., Seyranian A.P. Collapse of the Keldysh Chains and Stability of Continuous Non-Conservative Systems. DCAMM Report. No. 671. April 2002. 42 pages. (PDF)

  20. Kirillov O.N., Seyranian A.P. On the Stability Boundaries of Circulatory Systems. 
    Moscow State Lomonosov Univ., Preprint of the Institute of Mechanics.
    No. 51-99. 1999. 60 pages.

 

Proceedings:

  1. O.N. Kirillov, Re-visiting structural optimization of the Ziegler pendulum: singularities and exact optimal solutions  2011 PAMM Special Issue: 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Graz 2011; Editors: G. Brenn, G.A. Holzapfel, M. Schanz and O. Steinbach,Volume 11, Issue 1, pages 717–718. (PDF

  2. O.N. Kirillov, F. Stefani, Singularities on the boundaries of magnetorotational instabilities and scaling laws 2011 PAMM Special Issue: 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Graz 2011; Editors: G. Brenn, G.A. Holzapfel, M. Schanz and O. Steinbach,Volume 11, Issue 1, pages 655–656. (PDF)

  3. O.N. Kirillov, How Does Krein Signature Determine Veering and Crossing of Eigencurves of Non-Conservative Rotating Continua? ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010, 19–25 September 2010, Rhodes (Greece), AIP Conference Proceedings, 1281: 1420-1423 (PDF)

  4. F. Verhulst, O.N. Kirillov, Instabilities induced by dissipation, 10th Conference on Dynamical Systems Theory and Applications, December 7-10, 2009. Lodz, Poland  (PDF)

  5. O.N. Kirillov, F. Verhulst, Sensitivity analysis of dissipative reversible and Hamiltonian systems: a survey, ASME International Mechanical Engineering Congress and Exposition, Symposium on Stability, Structural Reliability and Random Vibrations, November 13-19, 2009, Lake Buena Vista, FL, USA, Proceedings paper IMECE2009-10449. (PDF)

  6. O.N. Kirillov, Untwisting the Campbell diagrams of weakly anisotropic rotor systems, Journal of Physics: Conference Series 181 (2009) 012023, 7th International Conference on Modern Practice in Stress and Vibration Analysis,  8-10 September 2009, Murray Edwards College, Cambridge, UK (PDF).

  7. Kirillov O.N. Perturbation of eigenvalues in multiparameter families of non-self-adjoint operator matrices. Physics and Control 2009, September 1-4, 2009, Catania, Italy. (PDF)

  8. Kirillov O.N. Singular features of traveling wave propagation in rotating elastic bodies of revolution in frictional contact. CDROM Proceedings of ICSV16, Kraków, Poland, 5-9 July 2009 (PDF)

  9. Kirillov O.N. Sensitivity analysis of Hamiltonian and reversible systems prone to dissipation-induced instabilities. in: 'Matrix methods: theory, algorithms, applications', E. Tyrtyshnikov and V. Olshevsky, eds. Procedings of the 2nd International Conference on matrix methods and operator equations, July 23-27, 2007, Moscow, Russia. World Scientific. 2009. P. 31-68. (PDF).

  10. O.N. Kirillov. Dissipation-induced subcritical flutter in the acoustics of friction, Proc. Appl. Math. Mech. Vol. 8(1). 2008 P. 10685–10686 (PDF)

  11. U. Gunther, O.N. Kirillov. Homotopic deformation of the Arnold's tongues for the MHD 2-dynamo, Proc. Appl. Math. Mech. Vol. 8(1). 2008 P. 10719–10720 (PDF)

  12. O.N. Kirillov. Sensitivity analysis of gyroscopic and circulatory systems prone to dissipation-induced instabilities. Proceedings of MOVIC 2008 - The International Conference on Motion and Vibration Control, 15-18 September 2008, Munich, Germany. (PDF).

  13. O.N. Kirillov. Subcritical flutter in the acoustics of friction of the spinning rotationally symmetric elastic continua. Proceedings of ISMA 2008 - International Conference on Noise and Vibration Engineering. 15-17 September 2008, Leuven, Belgium. Editors: P. Sas, B. Bergen, P. 2977-2992. (PDF)

  14. O.N. Kirillov. Subcritical flutter in the problems of acoustics of friction. Paper 10157 in the CD-ROM Proceedings of XXIInd International Congress of Theoretical and Applied Mechanics. ISBN 978-0-9805142-106. August 25-29, Adelaide, Australia (PDF)

  15. O.N. Kirillov. How to Play a Disc Brake: A Dissipation-Induced Squeal. SAE Paper 2008-01-1160, In: Noise and Vibration, 2008, SP-2158, SAE World Congress and Exhibition, April 14-17 2008, Detroit, MI, USA. P. 167-180. (PDF)

  16. Kirillov O.N.  Stabilization and destabilization in non-conservative gyroscopic systems Proc. Appl. Math. Mech. Vol. 7(1). 2007. P. 4050001-4050002 (PDF)

  17. Guenther U., Kirillov O.N.  
    Asymptotic methods for spherically symmetric MHD alpha^2-dynamos. 
    Proc. Appl. Math. Mech.
    Vol. 7(1). 2007. P. 4140023–4140024 (PDF)

  18. Kirillov O.N. Gyroscopic stabilization in presence of non-conservative forces. Proceedings of the 12th IFToMM World Congress in Mechanism and Machine Science, Besancon, June 18-21, 2007, P. (PDF

  19. Kirillov O.N., Guenther U. On Krein space related perturbation theory for MHD alpha-2 dynamos.
    Proc. Appl. Math. Mech. Vol. 6(1). 2006. P. 637-638. (PDF)

  20. Kirillov O.N., Seyranian A.P. Effect of small internal and external damping on the stability of continuous non-conservative systems. Proceedings CDROM of the ENOC-2005, Eindhoven, The Netherlands, 7-12 August 2005. P. 2428-2436. (PDF)

  21. Kirillov O.N., Mailybaev A.A., and Seyranian A.P. On eigenvalue surfaces near a diabolic point. Proceedings of the International Conference "Physics and Control". St.-Petersburg. Russia. August 24-26. 2005. P. 319-325 (PDF)

  22. Mailybaev A.A., Kirillov O.N., and Seyranian A.P.. Strong and weak coupling of eigenvalues of complex matrices. Proceedings of the International Conference "Physics and Control". St.-Petersburg. Russia.  August 24-26. 2005. P. 312-318. (PDF)

  23. Kirillov O.N. Sensitivity analysis of the roots of the characteristic polynomial and stability of non-conservative systems. Proceedings of the International Conference "Physics and Control". St.-Petersburg. Russia.  August 24-26. 2005. P. 206-211. (PDF)

  24. Kirillov O.N. Seyranian A.P. Dissipation induced instabilities in continuous non-conservative systems.
    Proc. Appl. Math. Mech. Vol. 5(1). 2005. P. 97-98. (PDF)

  25. Kirillov O.N. An Analytical Theory of the Destabilization Paradox in Non-Conservative Systems. In: COMPUTATIONAL MECHANICS; Proceedings CDROM of the Sixth World Congress on Computational Mechanics in conjunction with APCOM’04, Sept. 5-10, 2004, Beijing, China.
    2004 Tsinghua University Press & Springer-Verlag. (PDF).

  26. Kirillov O.N. Stabilizing and destabilizing effect of small velocity-dependent forces on non-conservative systems: new results. Proc. Appl. Math. Mech. Vol. 4(1). 2004. P. 95-96. (PDF)

  27. Kirillov O.N. Collapse of Keldysh chains and stability boundaries of non-conservative systems. 
    Proc. Appl. Math. Mech.
    Vol. 2(1). 2003. P. 92-93. (PDF).

  28. Kirillov O.N. How do small velocity-dependent forces (de)stabilize a non-conservative system? 
    Proceedings of the International Conference "Physics and Control". St.-Petersburg. Russia. 
    August 20-22. 2003. Vol. 4. P. 1090-1095. (PDF).

  29. Kirillov O.N., Seyranian A.P. Overlapping of Characteristic Curves and Optimization of Nonconservative Systems. Proceedings of the 15th Nordic Seminar on Computational Mechanics. Aalborg. Denmark. Edited by E. Lund, N. Olhoff, J. Stegmann. 2002. P. 227-228. (PDF)

  30. Kirillov O.N., Seyranian A.P. Metamorphoses of Characteristic curves and Optimization
    of Nonconservative Systems. Proceedings of XXX Summer School APM'2002.
    June 27 - July 6, 2002. St. Petersburg (Repino), Russia. P. 342-347.

  31. Kirillov O.N., Seyranian A.P. Bifurcation of Eigenvalues of Nonselfadjoint Differential Operators in Nonconservative Stability Problems. Paper no. OMAE2002-28076, ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE2002) June 23–28, 2002 , Oslo, Norway, P. 31-37. (PDF)

  32. Kirillov O.N., Seyranian A.P. Bifurcation of eigenvalues of nonselfadjoint differential operators with an application to mechanical problems. 
    Proceedings of the Seminar "Time, Chaos and Mathematical Problems".
    Eds.: R.I. Bogdanov and A.S. Pechentsov. 2000. Vol. 2. P. 217-240.

  33. Kirillov O.N., Seyranian A.P. Optimality conditions in nonconservative stability problems. Topology optimization of structures and composite continua. 
    In NATO Science Series II: Mathematics, Physics, and Chemistry. Edited by G.I.N. Rozvany and N. Olhoff
    . 2000. Vol. 7. P. 363-365. Kluwer Academic Publishers, Dordrecht / Boston / London.

  34. Kirillov O.N., Seyranian A.P. Optimization of Stability of a Flying Column. 
    3rd World Congress of Structural and Multidisciplinary Optimization. Buffalo. New York (USA).
    May 17-21, 1999. Short paper proceedings. Vol. 2. P. 355-357. (PDF)

  35. Kirillov O.N., Seyranian A.P. Optimization of Stability of a Flexible Missile under Follower Thrust. 
    7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St.Louis. Missouri (USA).
    September 2-4. 1998. AIAA Paper #98-4969. P. 2063-2073. (PDF)

 

Dissertation:

  1. Kirillov O.N. Analysis of Stability Boundaries and Optimization of Circulatory Systems.
    Ph.D. Thesis. April 21, 2000. 160 pages. (PDF)

  2. Kirillov O.N. Analysis of Stability Boundaries and Optimization of Circulatory Systems.
    Ph.D. Thesis Summary. 2000. pp. 1-22. (PDF)

 

Conferences:

  1. J. Lerbet, N. Challamel, F. Darve, O. Kirillov, F. Nicot, Stabilite des systemes non conservatifs et algebre lineaire, Congres Francais de Mechanique, Bordeaux, 26-30 August, 2013

  2. Kirillov Oleg N., Frank Stefani, Yasuhide Fukumoto, WKB instability thresholds of the magnetized cylindrical Couette-Taylor flow in helical magnetic fields, IUTAM 2013 Symposium on vortex dynamics, Fukuoka, Japan (PDF)

  3. Oleg Kirillov, Frank Stefani, Uwe Guenther, How to excite oscillating modes in the kinematic mean-field alpha2-dynamo: A Krein space-related perturbation approach, Les Houches 2013 Winter school ``Waves and Instabilities in Geophysical and Astrophysical Flows'', Les Houches, France (PDF)

  4. O.N. Kirillov, Dissipation-induced subcritical flutter in acoustics of friction. GAMM 2008, March 31 - April 4, Bremen, Germany

  5. U. Guenther, O.N. Kirillov, Homotopic deformations of the Arnold tongue patterns in the MHD a2-dynamo spectrum. GAMM 2008, March 31 - April 4, Bremen, Germany

  6. O.N. Kirillov, How to play a disc brake. Abstracts of the BIRS 07w5068 Workshop "Geometric Mechanics: Continuous and Discrete, finite and infinite dimensional", August 12-17, 2007, Banff, Canada.

  7. O.N. Kirillov, Stabilizing and destabilizing effect of breaking the Hamiltonian and reversible symmetry. Abstracts of the 2nd International Conference on matrix methods and operator equations, July 23-27, 2007. Institute of Numerical Mathematics, Russian Academy of Sciences. Moscow, Russia. P. 41-42.

  8. O.N. Kirillov. Gyroscopic stabilization and destabilization in non-conservative systems. 
    Abstracts for ICIAM07, July 16-20, 2007, Zurich, Switzerland, P. 62-63.

  9. U. Guenther, O.N. Kirillov. Asymptotic methods for spherically symmetric MHD alpha^2 dynamo. 
    Abstracts for ICIAM07, July 16-20, 2007, Zurich, Switzerland, P. 125.

  10. O.N. Kirillov, P. Hagedorn, G. Spelsberg-Corspeter, U. Guenther. Bifurcation of eigenvalues of non-self-adjoint boundary value problems of mechanics and MHD. International Conference "Modern Analysis and Applications- MAA 2007" dedicated to the centenary of Mark Krein. Odessa, Ukraine, April 9-14, 2007. Book of abstracts. P. 71.

  11. U. Guenther, F. Stefani, O.N. Kirillov. The spherically symmetric \alpha2-dynamo, resonant unfolding of diabolical points and third-order exceptional points in Krein space related setups. DI Microconference Analytic and algebraic methods in physics, February 20, 2007, Villa Lanna, Prague, Czech Republic.

  12. O.N. Kirillov, U. Guenther. Resonance effects in MHD alpha-2 dynamos. Abstracts of the 9th MHD days 2006, 4-5 December, Max-Planck Institute for Astronomy, Heidelberg, Germany. P. 12-13.

  13. O.N. Kirillov, U. Guenther. Krein space related perturbation theory for MHD alpha-2 dynamo and resonant unfolding of diabolical points. International Summer School and Workshop Operator Algebras, Operator Theory and Applications - WOAT 2006, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Portugal, 1-5 September, 2006.

  14. O.N. Kirillov, U. Guenther. Krein space related perturbation theory for MHD alpha-2 dynamos and resonant unfolding of diabolical points. Abstracts of the ICM 2006, 22-30 August, Madrid, Spain. P. 444-445.

  15. G. Spelsberg-Korspeter, D. Hochlenert, O. N. Kirillov, P. Hagedorn. Modelling and nonlinear analysis of break squeal - self-excited vibrations in moving continua. Abstracts of the 11th Conference on Nonlinear Vibrations, Stability, and Dynamics of Structures. August 13-17, 2006. Blacksburg, VA, USA.

  16. U. Guenther, O.N. Kirillov, F. Stefani, M. Znojil. Three models of Krein-space related physics: PT- symmetric Quantum Mechanics, Squire equation and the alpha-2 dynamo. 17th International Workshop on Operator Theory and Applications. Research Institute of Mathematics, Seoul National University, Korea, July 31 - August 3, 2006.

  17. O.N. Kirillov, A.A. Mailybaev, and A.P. Seyranian. Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation. Joint GAMM-SIAM Conference on Applied Linear Algebra. July 24-27. 2006. Duesseldorf, Germany. Book of abstracts. P. 105. 

  18. O.N. Kirillov. Tippe Top inversion and EPs. 5th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics. 3-8 July. 2006. Bologna. Italy.

  19. U. Guenther, O.N. Kirillov. New results on the spectrum of the MHD alpha-2 dynamo and on Jordan algebrs related canonical structures of PT-symmetric matrices. 5th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics. 3-8 July. 2006. Bologna. Italy.

  20. Seyranian A.P., Mailybaev A.A., Kirillov O.N. Multiparameter stability theory with mechanical applications. IXth International  Simposium "Stability and oscillations in non-linear control systems", Institute of Control Sciences RAS, May 31 - June 2, 2006. (invited lecture).

  21. Seyranian A.P., Mailybaev A.A., Kirillov O.N. Bifurcation of eigenvalues. Modern physical problems. 3rd International Conference: Chebyshev's Mathematical Ideas and Applications to the Modern Science. Obninsk State University, May 14-18, Obninsk, Russia.

  22. Kirillov O.N., Guenther U. Krein space related perturbation theory for MHD alpha-2 dynamos. Book of Abstracts of the 77th Annual Scientific Conference GAMM.  (March 27-31, 2006, Berlin). P. 368-369.

  23. Kirillov O.N., Seyranian A.P. Effect of small internal and external damping on the stability of continuous non-conservative systems. 5th EUROMECH Nonlinear Dynamics Conference. Eindhoven University of Technology. August 7-12, 2005. Book of abstracts. P. 321.

  24. Kirillov O.N, Guenther U. Perturbation theory for non-self-adjoint operator matrices and its application to the MHD alpha-2 dynamo. Abstracts of the 4th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics, University of Stellenbosch, Western Cape, South Africa, November 23-25, 2005.

  25. Mailybaev A.A., Kirillov O.N. Berry phase around EP and DP degeneracies of non-Hermitian Hamiltonians. Abstracts of the 4th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics, University of Stellenbosch, Western Cape, South Africa, November 23-25, 2005.

  26. Guenther U., Kirillov O.N., Stefani F. Bundle stratification of PT-symmetric 4x4 matrix systems and 4th order spectral branch points of MHD alpha-2 dynamo. Abstracts of the 4th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics, University of Stellenbosch, Western Cape, South Africa, November 23-25, 2005.

  27. Kirillov O.N. Bifurcation of the roots of the characteristic polynomial and destabilization paradox in non-conservative systems. Alexander von Humboldt Einfuehrungstagung. Mainz. 13-15 Oktober 2005. Abstracts. P. 48.

  28. Kirillov O.N. Bifurcation of the roots of the characteristic polynomial and destabilization paradox. International Simposium on Nonconservative and Dissipative Problems in Mechanics. 11-14 September 2005. Novi Sad. Serbia. Serbian Academy of Arts and Sciences. Book of abstracts. P. 20.

  29. Kirillov O.N., Mailybaev A.A., Seyranian A.P. Unfolding of eigenvalue surfaces near a diabolic point due to a non-Hermitian perturbation. Abstracts of the 3rd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics. Koc University, Istanbul, June 20-22, 2005.

  30. Mailybaev A.A., Kirillov O.N., Seyranian A.P. Geometric phase around exceptional points. Abstracts of the 3rd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics. Koc University, Istanbul, June 20-22, 2005.

  31. Seyranian A.P., Kirillov O.N., Mailybaev A.A. Coupling of eigenvalues of complex matrices at diabolic and exceptional points. Abstracts of the 3rd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics. Koc University, Istanbul, June 20-22, 2005.

  32. Kirillov O.N., Seyranian A.P. Dissipation Induced Instabilities in Continuous Non-Conservative Systems. 76th Annual Scientific Conference GAMM 2005. Abstracts. Part 1. March 28 - April 1, 2005. Universite de Luxembourg. P. 63.

  33. Kirillov O.N. An Analytical Theory of the Destabilization Paradox in Non-Conservative Systems. In: COMPUTATIONAL MECHANICS; Abstracts of the Sixth World Congress on Computational Mechanics in conjunction with APCOM’04, Sept. 5-10, 2004, Beijing, China. 2004 Tsinghua University Press & Springer-Verlag. Vol. 1. P. 473.

  34. Kirillov O.N. Stabilizing and destabilizing effect of small velocity-dependent forces on non-conservative systems: new results. Book of Abstracts of the 75th Annual Scientific Conference GAMM
    (March 21-27, 2004, Dresden)
    . P. 35-36. 

  35. Kirillov O.N. A theory of the destabilization paradox in non-conservative systems, 4th European Congress of Mathematics, Stockholm (Sweden), 2004. Abstracts, http://www.math.kth.se/4ecm/abstracts/14.50.pdf

  36. Seyranian A.P., Mailybaev A.A., Kirillov O.N. Multiparameter stability theory with mechanical applications. Abstracts of the 7 th International Ñonference “Chaos-2004”. October 1-6, 2004. Saratov. Russia. P. 147-149.

  37. Kirillov O.N. Destabilization paradox in non-conservative systems. Book of Abstracts of the International Conference on Differential Equations and Dynamical Systems. Suzdal. Russia. July 5-10. 2004. P. 275-276.

  38. Kirillov O.N. How do small velocity-dependent forces (de)stabilize a non-conservative system? Abstracts of the 5th EUROMECH Solid Mechanics Conference. August 17-22. 2003. 
    AUT. Thessaloniki. Greece. P. 162.

  39. Kirillov O.N. How do small velocity-dependent forces (de)stabilize a non-conservative system? Abstracts of the International Conference "Physics and Control." August 20-22. 2003. St.-Petersburg.  P. 94.

  40. Kirillov O.N., Seyranian A.P. Collapse of the Keldysh chains and stability of continuous non-conservative systems. Third International Conference "Polyahovskie chtenija". St.-Petersburg. Book of abstracts. 2003. P.77-78. 

  41. Kirillov O.N. How do small velocity-dependent forces (de)stabilize a non-conservative system? Abstracts of the International Conference "Kolmogorov and Contemporary Mathematics", Moscow State University. Moscow. 2003. P. 185-186.

  42. Kirillov O.N. Collapse of Keldysh chains and stability boundaries of non-conservative systems. Book of Abstracts of the Annual Scientific Conference GAMM. (March 25-28, 2002, Augsburg) P. 77. 

  43. Kirillov O.N. Metamorphoses of characteristic curves and optimization of non-conservative systems. ICM 2002 Satellite Conference on Control and Optimization. (August 30-September 1, 2002, Xi'an, China).

  44. Kirillov O.N., Seyranian A.P. Metamorphoses of characteristic curves and optimization of nonconservative systems. XXX Summer school "Advanced problems in Mechanics" (June27-July 6, 2002, St. Petersburg). Book of Abstracts. P.57.

  45. Kirillov O.N., Seyranian A.P. Collapse of Keldysh chains and stability of continuous non-conservative systems. International Conference "Mathematical ideas of P. L. Chebyshev and their application for modern problems of natural sciences." (Obninsk, May 14-18, 2002). Book of abstracts. P. 49.

  46. Kirillov O.N., Seyranian A.P. Bifurcation of eigenvalues of nonselfadjoint differential operators and stability of nonconservative systems. Abstracts of the Second International Congress "Nonlinear Dynamical Analysis". Moscow, June 3-8, 2002.

  47. Kirillov O.N. Singularities of the stability boundary of circulatory systems. All-Russian Young Scientists Competition on Mechanics and Control Dedicated to the 100th Anniversary of A.I. Lurie. December 13-14, 2001, Saint-Petersburg.

  48. Kirillov O.N., Seyranian A.P. Phenomenon of overlapping of characteristic curves in nonconservative systems: theory and applications. 
    Compilation of abstracts for the First MIT Conference on Computational Fluid and Solid Mechanics.
    2001. Cambridge. MA. P. 73.

  49. Kirillov O.N. Bifurcation of eigenvalues of nonselfadjoint differential operators and stability of nonconservative systems. 
    Book of abstracts. International Conference "Differential Equations and Related Topics" Dedicated to the Centenary Anniversary of I.G. Petrovskii.
    2001. P. 191. Moscow.

  50. Kirillov O.N. On a non-smooth optimization problem. 
    8th All-Russian Congress on Theoretical and Applied Mechanics.
    Perm. Russia. August 23-29, 2001. Book of abstracts. P. 321.

  51. Kirillov O.N. On a non-smooth optimization problem on stability criteria. 
    International School on Dynamical and Controlled Systems.
    Suzdal. 2001 Book of Abstracts. P. 28.

  52. Kirillov O.N. Metamorphoses of characteristic curves in non-conservative systems dependent on parameters. Conference of Young Scientists of the Institute of Mechanics. October 10-12, 2001.

  53. Seyranian A.P., Mailybaev A.A., Kirillov O.N. Singularities of stability boundaries: analysis and applications. Lomonosov Reading - 2000. 

  54. Kirillov O.N., Seyranian A.P. Optimization of stability of a flexible column moving due to action of the follower force. Applied problems of Mechanics of Rocket and Space systems. All-Russian Conference dedicated to 40-th Anniversary of the department "Aerospace systems". N.E. Bauman Moscow State Technical University. December 5, 2000. P. 111.

  55. Seyranian A.P., Kirillov O.N. Singularities of stability boundaries of circulatory systems. 
    Int. Conference on Differential Equations and Dynamical Systems.
    Suzdal. Abstracts. 2000. P. 73.

  56. Kirillov O.N., Seyranian A.P. Stability boundaries and overlapping of characteristic curves in circulatory systems. 
    4th EUROMECH Solid Mechanics Conference. Book of abstracts.
    2000. Vol. 2. P. 533. Universite de Metz. France.

  57. Seyranian A.P., Kirillov O.N. Bifurcation diagrams and stability boundaries of discrete and continuous circulatory systems. 
    4th EUROMECH Solid Mechanics Conference. Book of abstracts.
    2000. Vol. 2. P. 644. Universite de Metz. France.

  58. Kirillov O.N. Necessary optimality conditions in optimization problems for non-conservative systems. Conference of Young Scientists of the Institute of Mechanics. 2000.

  59. Kirillov O.N., Seyranian A.P. On stability boundaries of circulatory systems. 
    Lomonosov Reading - 1999

  60. Kirillov O.N., Seyranian A.P. Optimal distributions of mass and stiffness in a problem of flexible stability of a flying column. 
    5th International Simposium on Dynamical and Technological Problems of Structures and Solids.
    Moscow Aviation Institute. 1999. P. 37-38.

  61. Kirillov O.N., Seyranian A.P. Bifurcation Diagrams and Stability Boundaries of Circulatory Systems. 7th International Conference on Stability, Control and Dynamics of Solids. Institute of Applied Maths and Mechs of the National Academy of Science. Donetsk. Ukraine. Book of Abstracts. 1999. P. 64.

  62. Kirillov O.N., Seyranian A.P. Bifurcation diagrams and stability boundaries of circulatory systems. International Conference on Mathematical Physics, Dedicated to the 90th Anniversary of G.F. Laptev. Moscow State University. October 25-30. 1999. Book of abstracts. P. 23-24.

  63. Kirillov O.N., Seyranian A.P. Optimization of the critical load in a problem of elastic stability of a flying column. 
    International Conference on Geometry, Differential Equations and Optimal Control Dedicated to the 90th Anniversary of L.S. Pontryagin.
    Moscow State University. Book of Abstracts. 1998. P. 232-235.

 

Copyright ã 2001-2008 by Oleg & Ksenia Kirillov

  
SpyLOG